
Page 1 of 152

API Guidelines

Description UKHSA API Guidelines

Author(s) UKSHA

Repository https://github.com/ukhsa-collaboration/api-guidelines/

https://github.com/ukhsa-collaboration/api-guidelines/

Page 2 of 152

Table of Contents

1 API Guidelines

1.1 Introduction

1.2 API Specification & Documentation

1.3 Organisational Data Models

1.4 API Design

1.5 Naming Conventions

1.6 Security

1.7 Error Handling

1.8 Versioning and Deprecation

1.9 Pagination, Filtering & Sorting

1.10 Testing

1.11 Performance, Reliability & Monitoring

1.11.1 Overview

1.11.2 Caching

1.11.3 Resilience Patterns

1.11.4 Monitoring & Observability

1.12 Governance

1.13 Data Standards

1.14 Common Data Types

1.15 Integration Patterns

2 API Guidance Summary

2.1 API Guidance Summary

3 Spectral Rules

3.1 UKHSA Spectral Rules

3.2 MUST

Page 3 of 152

3.2.1 MUST define a format for integer types

3.2.2 MUST define a format for number types

3.2.3 MUST define security schemes

3.2.4 MUST have info api audience

3.2.5 MUST have info contact email

3.2.6 MUST have info contact name

3.2.7 MUST have info contact url

3.2.8 MUST have info description

3.2.9 MUST have info title

3.2.10 MUST have info value chain

3.2.11 MUST have info version

3.2.12 MUST NOT define request body for GET requests

3.2.13 MUST NOT use http basic authentication

3.2.14 MUST NOT use uri versioning

3.2.15 MUST return 200 for api root

3.2.16 MUST specify default response

3.2.17 MUST use camel case for property names

3.2.18 MUST use camel case for query parameters

3.2.19 MUST use https protocol only

3.2.20 MUST use lowercase with hyphens for path segments

3.2.21 MUST use normalised paths

3.2.22 MUST use normalized paths without empty path segments

3.2.23 MUST use problem json as default response

3.2.24 MUST use problem json for errors

3.2.25 MUST use valid problem json schema

3.2.26 MUST use valid version info schema

3.3 SHOULD

3.3.1 SHOULD always return json objects as top level data structures

3.3.2 SHOULD declare enum values using upper snake case format

Page 4 of 152

3.3.3 SHOULD define api root

3.3.4 should have location header in 201 response

3.3.5 SHOULD limit number of resource types

3.3.6 SHOULD limit number of sub resource levels

3.3.7 SHOULD prefer standard media type names

3.3.8 SHOULD support application/json content request body

3.3.9 SHOULD use hyphenated pascal case for header parameters

3.3.10 SHOULD use standard http status codes

3.3.11 SHOULD use x-extensible-enum

Page 5 of 152

1 API Guidelines

Page 6 of 152

1.1 Introduction

This documentation supplements the API Strategy to provide detailed guidance on

patterns and standards.

Standardising API design reduces friction, making APIs easier to understand, use, and

maintain. APIs designed with consistent patterns are more intuitive and user-friendly with a

common set of expectations that will enable better collaboration between teams.

These guidelines will ensure that all APIs follow accepted design, security and governance

models, thereby raising the bar on API quality across the organisation.

1.1.1 When to use these guidelines

These guidelines follow the principles of Representational State Transfer (REST), using HTTP

methods and stateless communication between client and server. The guidelines cover these

use cases:

Internal APIs (Private APIs): Used to communicate between different internal systems,

services or applications.

Public APIs (Open APIs): Openly accessible to external developers and users.

Partner APIs: shared with specific external partners but are not openly available to the

public. These APIs are typically part of a business agreement, allowing partners to

integrate with internal systems or access shared services.

All the above APIs are expected to apply the same guidelines, patterns and standards.

If your product API is based on a different API technology, such as GraphQL or gRPC, this

guidance may only partially apply. Further guidance may be provided in future depending on

demand.

1.1.2 How to read the guidelines

Page 7 of 152

The CAPITALIZED words throughout these guidelines have a special meaning:

Refer to RFC2119 for details.

How to use these guidelines

Each section addresses key aspects of building APIs, including naming conventions,

versioning, security, error handling, and documentation.

Here's how to navigate and use these guidelines effectively:

Review the sections on API design, naming conventions, versioning and error handling and

create an OpenAPI definition that adheres to these patterns. Determine your security

requirements and apply the recommended authorisation, authentication and security

patterns, such as OAuth 2.0, JWTs, and Role-Based Access Control (RBAC). Ensure your API

is well-documented including error scenarios and example responses within the OpenAPI

definition. Use the recommended tools for linting, validating and testing your OpenAPI

definition and other aspects of your API.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in

this document are to be interpreted as described in RFC2119.

https://datatracker.ietf.org/doc/html/rfc2119

Page 8 of 152

1.2 API Specification &

Documentation

The OpenAPI specification (OAS; formerly known as Swagger) is a widely adopted standard

for describing REST APIs. It provides a machine-readable format for defining API endpoints,

request/response schemas, and security configurations.

Using the OpenAPI Specification to create an OpenAPI definition is an essential design

output when developing your API. The definition can be created in a simple text editor,

integrated development environment (IDE), or using a dedicated tool such as Swagger Editor.

A sample OpenAPI definition based on these guidelines can be viewed here.

1.2.1 Generating code from OpenAPI definitions

The OpenAPI definition can be used to generate client and server code, including data

transfer (DTOs) and service objects (implementation stubs). The OpenAPI Generator project

supports a number of programming languages, frameworks and toolchains for this purpose.

Consider using these tools to accelerate development and testing.

1.2.2 Validating API requests against OpenAPI definitions

Tools exist for validating JSON REST content against OpenAPI definitions as part of testing.

For example, the swagger-request-validator is an open source (Apache 2.0 licensed)

validator.

1.2.3 Example responses & mock responses

https://swagger.io/specification/
https://editor.swagger.io/
https://github.com/ukhsa-collaboration/api-guidelines/blob/main/example/example.1.0.0.oas.yml
https://openapi-generator.tech/
https://bitbucket.org/atlassian/swagger-request-validator/src/master/

Page 9 of 152

Provide example responses in the OpenAPI definition. Examples will allow clients see what a

small sample of the data returned by the API looks like, which will avoid ambiguity and

accelerate development.

Page 10 of 152

1.3 Organisational Data Models

APIs SHOULD be built and categorised according to the business capabilities they support.

This approach will align the UKHSA API portfolio with the core business functions and value

streams of the organisation (e.g. surveillance, monitoring etc), making it easier for internal

and external users to find and integrate with APIs that expose known business capabilities.

Organising APIs by business capability provides a logical structure that facilitates consistent

governance and makes it simpler to identify gaps and opportunities for development within

the organisation’s API ecosystem.

APIs SHOULD NOT be designed around specific application use cases that are not aligned to

capabilities and defined organisational data models.

The consistency of the names of entities and attributes across the whole application MUST

be maintained.

https://confluence.collab.test-and-trace.nhs.uk/display/AT/Business+Capability+Model
https://confluence.collab.test-and-trace.nhs.uk/display/TCFPP/Logical+Data+Model

Page 11 of 152

1.4 API Design

1.4.1 API-First

SHOULD follow the API-first approach to designing the API, as it prioritises the API contract

from the very beginning, leading to the development of APIs which are more consistent,

standardised and reusable.

1.4.2 RESTful API Style

SHOULD use the HTTP REST API style.

REST APIs MUST be stateless by design.

1.4.3 REST Maturity Levels

The Richardson Maturity Model defines levels of maturity for RESTful APIs, ranging from

basic usage of HTTP to fully REST-compliant APIs.

APIs MUST use at least Maturity Level 2 .

At this level, APIs not only define resources with URIs but also correctly use HTTP methods

to perform actions on these resources. The interaction follows REST principles more closely,

with specific verbs (GET , POST , PUT , DELETE) representing different actions.

Resources MUST be identified with distinct URIs

Standard HTTP methods MUST be used correctly

The API MUST use standard HTTP status codes for responses

APIs MAY use Maturity Level 3 - Hyper Media Controls (HATEOAS).

1.4.4 HTTP Methods & Semantics

Page 12 of 152

APIs MUST use the appropriate HTTP method to perform operations on resources:

GET : Retrieve a resource or a collection of resources.

POST : Create a new resource.

PUT : Update an existing resource, typically replacing it.

PATCH : Partially update an existing resource.

DELETE : Remove a resource.

APIs SHOULD observe standard method semantics:

Safe methods have no side affects (i.e. using the method does not alter data).

Idempotent methods can be be executed multiple times with the same result as executing

once.

Cacheable methods indicate responses can be cached / stored for future reuse.

Method implementations must fulfill the following basic properties according to RFC9110

Section 9.2:

Method Safe? Is idempotent? Is cacheable?

GET Yes Yes Optional

HEAD Yes Yes Optional

POST No No No

PUT No Yes No

PATCH No No No

DELETE No Yes No

OPTIONS Yes Yes No

TRACE Yes Yes No

https://datatracker.ietf.org/doc/html/rfc9110#section-9.2.1
https://datatracker.ietf.org/doc/html/rfc9110#section-9.2.2
https://datatracker.ietf.org/doc/html/rfc9110#section-9.2.3
https://datatracker.ietf.org/doc/html/rfc9110#section-9.2
https://datatracker.ietf.org/doc/html/rfc9110#section-9.2

Page 13 of 152

1.4.5 Response Format

APIs SHOULD accept and return valid JSON as the standard default data interchange format.

APIs MAY use the json.api specification.

APIs MAY use standard representations defined in specifications such as FHIR UK Core

where required but SHOULD use the JSON formats where they are defined.

APIs SHOULD return JSON objects as top-level data structures and not return JSON arrays at

the top level.

1.4.6 Content Negotiation

The API MUST indicate the format of the response using the Content-Type header.

APIs MAY return additional representations, such as XML, if supported and requested by

content negotiation via the Accept header.

Supported content types MUST be documented in the OpenAPI specification.

1.4.7 REST HTTP Response Codes

APIs MUST use standard HTTP response codes

Use standard HTTP status codes to indicate the result of the operation. For example:

200 OK, for a successful GET or PUT request.

201 Created, for a successful POST request that results in resource creation.

204 No Content, for a successful DELETE request.

400 Bad Request, for a request with invalid data.

404 Not Found, if the resource does not exist.

500 Internal Server Error, for server-side issues.

Content-Type: application/json

https://datatracker.ietf.org/doc/html/rfc8259
https://jsonapi.org/
https://digital.nhs.uk/services/fhir-uk-core
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

Page 14 of 152

201 Created responses to POST methods SHOULD have a Location header identifying

the location of the newly created resource according to RFC9110 Section 10.2.2.

https://datatracker.ietf.org/doc/html/rfc9110#section-10.2.2

Page 15 of 152

1.5 Naming Conventions

1.5.1 URI Structure

APIs MUST follow the defined hierarchical structure:

Scheme: MUST always be https://

Authority: Will be determined by the APIM platform

Path: Will consist of components:

Namespace: Predefined business area or capability

Product: The business product name

Version (v1): the major API version with 'v' prefix

Collection (users): the REST collection

Resource (12345): The REST resource identifier

Each resource MUST be uniquely identifiable by a Uniform Resource Identifier (URI).

APIs MUST use lowercase for the entire URI.

APIs SHOULD limit the level of nesting to avoid overly complex URIs. Typically, two to three

levels are sufficient.

https://azgw.api.ukhsa.gov.uk/namespace/product/v1/users/12345?

sort=startDate

____/ ___________________/ ______________________________/

____________/

| | | |

scheme authority path

parameters

Page 16 of 152

Environments

Domain Names for various environments can be found in the API Management Low Level

Design.

Namespaces

Namespaces and product names MUST be based on the Business Capability Model.

Where applications supports multiple business capabilities then namespaces and

product names should be based on the Leading one in LeanIX.

For example:

1.5.2 Resource Names

APIs MUST use lowercase plural nouns to represent collections (e.g., /orders, /customers,

/products) not verbs.

Use:

Note

Note

https://azgw.api.ukhsa.gov.uk/prevent/vaccine-management/v1/..

Tip

/product/v1/orders

/product/v1/orders/{orderId}/cancel

https://confluence.collab.test-and-trace.nhs.uk/display/BRP/API+Management+Low+level+Design+-+MVP
https://confluence.collab.test-and-trace.nhs.uk/display/BRP/API+Management+Low+level+Design+-+MVP
https://confluence.collab.test-and-trace.nhs.uk/display/AT/Business+Capability+Model
https://phe.leanix.net/phelive

Page 17 of 152

Avoid:

1.5.3 Path Segments

APIs MUST use kebab-case for path segments.

Use:

Avoid:

1.5.4 Parameter Names

APIs MUST use lower camel case for query parameter names.

Use:

Caution

/product/v1/order

/product/v1/cancelOrder

Tip

/product/v1/user-accounts

Caution

/product/v1/userAccounts

/product/v1/user_accounts

Page 18 of 152

Not:

Terminology

APIs MUST use consistent names for query parameters having the same function across

different endpoints.

Example:

1.5.5 Property Names

APIs MUST use lower camel case for properties.

Example:

Use:

Tip

/product/v1/users?maxResults=10&startIndex=20

Caution

/product/v1/users?max_results=10&start_index=20

Caution

/product/v1/orders?limit=10&offset=20

/product/v1/users?maxResults=10&startIndex=20

Page 19 of 152

Not:

1.5.6 Terminology

Use consistent terminology across the API and in documentation. For instance, if you use

customer in one part of your API, don't switch to client in another API if they represent the

same concept.

Example query string:

Example request/response model:

Tip

{

"customerId": "12345",

"userId" : "54321"

}

Caution

{

"customer_id": "12345",

"user_id" : "54321"

}

Caution

/product/v1/orders?customerId=123

/product/v1/users?clientId=123

Page 20 of 152

Caution

order

{

"orderId": "12345",

"customerId" : "54321"

...

}

user

{

"userId": "12345",

"clientId" : "54321"

...

}

Page 21 of 152

1.6 Security

1.6.1 Data Protection

All APIs MUST be exposed using HTTPS . This is required to protect credentials and data in

transit and applies to all API integrations.

Tokens are sensitive data and MUST be kept secret when communicated and stored in client

applications.

API inputs MUST be validated.

1.6.2 Authentication

Authentication establishes the identity of a resource owner - i.e. either an end user or an

application in system-to-system use cases.

Authentication MUST be handled with each request by providing a token along with the

request.

APIs MUST NOT use HTTP Basic Authentication.

SHOULD use JWT (JSON Web Tokens), passed in the Authorization header using the Bearer

scheme to convey authentication data.

OpenAPI Definition

Refer to OpenAPI documentation for the bearer scheme when designing the API.

When using JWTs as Bearer tokens, they MUST be included in the Authorization header as

follows:

Note

https://jwt.io/introduction
https://datatracker.ietf.org/doc/html/rfc7235#section-4.2
https://swagger.io/docs/specification/authentication/bearer-authentication/

Page 22 of 152

OpenID Connect

APIs SHOULD use OpenID Connect (OIDC) as the identity layer on top of OAuth 2.0 when

authentication of end users is required.

JWT Validation

JWTs MUST be signed based on the JSON Web Signature (JWS) standard.

JWT Validation JWT validation is a policy configurable on the APIM Platform that will

perform some validation. However, APIs MUST still validate the JWT as specified below.

The API MUST validate the JWT signature , expiry time , issuer , audience , subject

and claims in order to determine whether to grant access.

Issuer (iss): Verify that the token was issued by a trusted authority. Check the iss

claim against your expected issuer.

Audience (aud): Ensure that the token was issued for your specific API or service by

checking the aud claim.

Expiration Time (exp)/Not Before Time (nbf): Ensure that the token has not expired by

checking the exp and nbf claims, which are Unix timestamps.

Subject (sub): Check the sub claim to ensure the token belongs to the expected user.

Custom Claims: If the token includes any custom claims (e.g., roles, permissions), verify

them according to your application's logic.

MUST NOT put secret information inside the JWT token that uses the JWS standard.

JWT expiration for interactive end-user applications SHOULD be between 1 and 60 minutes.

Authorization: Bearer <Base64 URL Encoded JWT content>

Note

https://openid.net/developers/how-connect-works/
https://learn.microsoft.com/en-us/azure/api-management/validate-jwt-policy

Page 23 of 152

Security Note

Review the OWASP API guidelines on Broken Authentication and ensure relevant

guidance is followed.

1.6.3 Authorisation

OAuth 2.0 provides authorisation of a client application via an access token. In end user use

cases, authorisation is delegated from the user, whereas in system-to-system use cases

client are authorised on their own behalf.

Authorisation MUST be handled with each request by providing a token along with the

request.

APIs SHOULD use OAuth 2.0 for authorisation. Using OAuth 2.0 will provide the greatest

compatibility with API consumers as it is a widely adopted standard. The following

authorisation use cases are supported:

Use Case Grant Type Extensions

End User

(confidential

client)

For interactive authorisation where the

authentication of a user is required and the client

secret can be kept confidential within the backend

service.

Authorization

Code

Refresh Token

(MAY)

PKCE (SHOULD)

End User (public

client)

For interactive authorisation where the

authentication of a user is required and the client

secret CANNOT be kept confidential in the client

application.

Authorization

Code

Refresh Token

(MAY)

PKCE (MUST)

System-to-

System

For non-interactive authorisation outside of the

context of a user

Client

Credentials

Warning

https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://oauth.net/2/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/refresh-token/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/refresh-token/
https://oauth.net/2/grant-types/client-credentials/
https://oauth.net/2/grant-types/client-credentials/

Page 24 of 152

APIs SHOULD NOT use the "Resource Owner Password Credentials Grant" or "Implicit Grant",

which are considered legacy and have been deprecated from OAuth 2.1 as they are

considered weak from a security standpoint.

Refer to OpenAPI documentation for OAuth 2.0 when designing the API.

OAuth 2.0 Authorization Code Grant Type

SHOULD use OAuth 2.0 Authorization Code grant type for interactive authorisation

where the authentication of a user is required.

SHOULD use PKCE extension for enhanced security with confidential clients (e.g. backend

service). MAY use refresh tokens with Authorization Code grant type.

MUST use Authorization Code grant + PKCE with non-confidential (public) clients (e.g.

single page web or mobile applications). Note that mobile applications can be reverse

engineered to extract client secrets.

Client Credentials Grant Type

SHOULD use OAuth 2.0 Client Credentials grant type for non-interactive (machine-to-

machine) authorisation outside of the context of a user.

SHOULD define permissions using OAuth 2.0 scopes.

SHOULD NOT use refresh tokens with Client Credentials grant type.

TODO:

Scopes and permissions using OAuth 2.0 scopes

Note

https://oauth.net/2/grant-types/password/
https://oauth.net/2/grant-types/implicit/
https://swagger.io/docs/specification/authentication/oauth2/

Page 25 of 152

Security Note Review the OWASP guidelines on Broken Function Level Authorization and

ensure relevant guidance is followed.

1.6.4 Access Control

Role-Based Access Control (RBAC)

TODO

Security Note Review the OWASP guidelines on Broken Function Level Authorization and

ensure relevant guidance is followed.

1.6.5 Rate Limiting

TODO

Warning

Warning

https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/

Page 26 of 152

1.7 Error Handling

1.7.1 Problem Details

APIs MUST conform to the RFC-9457 standard "Problem Details for HTTP APIs" which

defines a structured way for expressing error details in HTTP APIs.

APIs MUST use the appropriate content type application/problem+json or

application/problem+xml (depending on the format bring returned) when returning the

Problem Details response object.

Problem Details responses MUST be described in the APIs open api specification.

A Problem Detail response MUST NOT contain a program stack trace or server log for

debugging purposes, instead consider an extended member such as traceId as described

bellow.

You MUST include all the base Problem Details members: status , title , detail , type

and instance .

Extended Details

As per the RFC-9457 you MAY extend the Problem Details object to include additional

context/information that are specific to the problem type.

There are some common extension members such as traceId , errors and code which

are useful and so you should consider including them.

Extension

Member

Include Detail

traceId MAY Can be used to find any distributed traces and logs for the current request.

errors MAY When you want to respresent multiple validation errors from a single request.

https://www.rfc-editor.org/rfc/rfc9457.html
https://www.rfc-editor.org/rfc/rfc9457.html
https://aws.amazon.com/what-is/distributed-tracing/

Page 27 of 152

Extension

Member

Include Detail

code MAY An API specific error code aiding the provider team understand the error based

on their own potential taxonomy or registry.

If an API extends their Problem Details object to include API specific error codes i.e. adding

code as an extension, then the API specific error codes MUST be documented in the

OpenAPI definition.

The MOT history API and NHS Spine Core API Framework provides a useful example for

standardising API specific error codes. While UKHSA's context may differ, a similar approach

can be adopted while still adhering to RFC-9457.

1.7.2 Common Problems Registry

RFC-9457 has the concept of a registry for common problems, given that the intended use

for these API Design Guidelines is for an APIM Platform, a single shared registry of Problem

Details MAY be created or an existing registry adopted (as long as there aren't multiple

registries) for common responses.

This should prevent redefining the same common responses for each new API and

encourage consistency which is especially helpful for consumers of multiple APIs on the

platform.

An example Problem Details registry with usage examples can be found here and the

corresponding OpenAPI components file here; This can be achieved in OpenAPI through the

use of the $ref keyword and referencing a URL which contains the shared OpenAPI

components.

$ref usage example

https://documentation.history.mot.api.gov.uk/mot-history-api/error-codes/
https://digital.nhs.uk/services/gp-connect/develop-gp-connect-services/development/error-handling#top
https://www.rfc-editor.org/rfc/rfc9457.html
https://www.rfc-editor.org/rfc/rfc9457.html
https://www.rfc-editor.org/rfc/rfc9457.html#registry
https://problems-registry.smartbear.com/
https://api.swaggerhub.com/domains/smartbear-public/ProblemDetails/1.0.0
https://swagger.io/docs/specification/v3_0/using-ref/

Page 28 of 152

paths:

/namespace/product/v1/patients:

get:

responses:

'200':

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/Result'

title: GetResultsListOk

description: A JSON array containing results objects.

'404':

$ref:

'https://developer.ukhsa.gov.uk/openApi/common#/components/responses/NotFo

und'

default:

$ref:

'https://developer.ukhsa.gov.uk/openApi/common#/#/components/responses/Une

xpectedError'

https://developer.ukhsa.gov.uk/openApi/common contents

...

components:

responses:

UnexpectedError:

description: An unexpected error occurred.

content:

application/problem+json:

schema:

$ref: '#/components/schemas/ProblemDetails'

examples:

unauthorized:

$ref: '#/components/examples/unauthorized'

forbidden:

$ref: '#/components/examples/forbidden'

not-found:

$ref: '#/components/examples/not-found'

server-error:

$ref: '#/components/examples/server-error'

...

Page 29 of 152

Refer to RFC-9547 standard for additional information.

1.7.3 Example Responses

400 Bad Request - Single Error

400 Bad Request - Multiple Errors

Note

HTTP/1.1 400 Bad Request

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.5.1",

"status": 400,

"title": "Bad Request",

"detail": "Invalid rquest, 'nhsNumber' is required.",

"instance": "POST /namespace/product/v1/patients",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

https://www.rfc-editor.org/rfc/rfc9457.html

Page 30 of 152

401 Unauthorized

403 Forbidden

HTTP/1.1 400 Bad Request

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.5.1",

"status": 400,

"title": "Bad Request",

"detail": "Invalid rquest, see errors.",

"errors": [{

"detail": "'nhsNumber' is required.",

"pointer": "#/nhsNUmber"

},

{

"detail": "'firstName' is required.",

"pointer": "#/firstName"

}]

"instance": "POST /namespace/product/v1/patients",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

HTTP/1.1 401 Unauthorized

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.5.2",

"status": 401,

"title": "Unauthorized",

"detail": "Access token not set or invalid. The requested resource could

not be returned",

"instance": "GET /namespace/product/v1/patients/12345",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

Page 31 of 152

404 Not Found

500 Internal Server Error

HTTP/1.1 403 Forbidden

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.5.4",

"status": 403,

"title": "Forbidden",

"detail": "The resource could not be returned as the requestor is not

authorized",

"instance": "GET /namespace/product/v1/patients/12345",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

HTTP/1.1 404 Not Found

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.5.5",

"status": 404,

"title": "Not Found",

"detail": "The requested resource was not found",

"instance": "GET /namespace/product/v1/patients/12345",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

HTTP/1.1 500 Internal Server Error

Content-Type: application/problem+json

{

"type": "https://datatracker.ietf.org/doc/html/rfc9110#section-15.6.1",

"status": 500,

"title": "Internal Server Error",

"detail": "The server encountered an unexpected error",

"traceId": "00-63d4af1807586b0d98901ae47944192d-9a8635facb90bf76-01"

}

Page 32 of 152

1.8 Versioning and Deprecation

1.8.1 URI versioning

MUST use URI (path-based) versioning.

API versions MUST start with v1.

The version number MUST be placed consistently at the base of the api path.

Version numbers MUST NOT be passed as parameters.

Use:

Avoid:

1.8.2 Semantic versioning

MUST use semantic versioning:

Tip

/product/v1/users

/product/v2/users

Caution

/product/users/v2

/product/users?v=1

version = {MAJOR}.{MINOR}.{PATCH}

Page 33 of 152

MAJOR version when you make incompatible API changes

MINOR version when you add functionality in a backward compatible manner

PATCH version when you make backward compatible bug fixes

For example: 1.0.1 (MAJOR = 1, MINOR = 0, PATCH = 1)

The semantic version represents the build version of the application.

MUST use only MAJOR version in URIs, formatter as the simple numeric MAJOR versions,

prefixed with 'v' (e.g. v1 , v2):

Use:

Avoid:

MINOR and PATCH versions MUST NOT be added to the URI as they do not affect

compatibility.

1.8.3 API root endpoint

There SHOULD be an endpoint to return version metadata (typically the APIs root /

endpoint) that is also documented in the OpenAPI definition, not only will this provide useful

API metadata but will help API consumers know they're looking at the right place instead of

getting a 404 or random 500 error as is common in some APIs.

Tip

/product/v1/users

Caution

/product/v1.0.1/users

Page 34 of 152

1.8.4 Compatibility

MUST provide a new API MAJOR version number for changes that alter the API contract, such

as changes to resource structure, new required parameters, or significant behavioural

changes.

Non-breaking changes, such as adding optional fields, new endpoints, or improving

performance MUST NOT increment the version number.

SHOULD maintain backwards compatibility where possible.

1.8.5 Deprecation

MUST deprecate old API versions and document API deprecation status

MUST document when older API versions will be deprecated and eventually retired in the

OpenAPI definition.

1.8.6 Communication

SHOULD notify API consumers of upcoming changes.

GET /namespace/product/v1

{

"name": "Product API",

"version": "1.0.1"

"status": "LIVE"

"releaseDate": "2024-09-17"

"documentation":

"https://developer.ukhsa.gov.uk/namespace/product/v1/docs"

"releaseNotes":

"https://developer.ukhsa.gov.uk/namespace/product/v1/releaseNotes"

}

Page 35 of 152

1.9 Pagination, Filtering & Sorting

1.9.1 Pagination

Offset-based pagination

SHOULD use offset-based pagination for smaller result sets.

Offset-based pagination uses limit and offset query parameters to specify the number

of items to return and the starting position in the dataset.

Query Parameters

limit : The maximum number of items to return.

offset : The number of items to skip before starting to collect the result set.

SHOULD provide sensible default values for the limit and offset parameters when not

provided.

SHOULD enforce a maximum limit to prevent clients from requesting excessively large pages

that could degrade server performance.

Cursor-based pagination

SHOULD use cursor-based pagination for larger result sets or when the underlying dataset

changes frequently.

Cursor-based pagination uses a “cursor” that points to a specific item in the dataset, typically

a unique identifier, to determine where to start the next page of results. The cursor is passed

as a query parameter, often encoded, and allows precise navigation through the dataset.

Query Parameters

GET /product/v1/orders?offset=10&limit=10

Page 36 of 152

cursor : The pointer to the position in the dataset to start the next page.

limit : The maximum number of items to return.

SHOULD provide sensible default values for the limit parameter when not provided.

SHOULD enforce a maximum limit to prevent clients from requesting excessively large pages

that could degrade server performance.

Pagination metadata

SHOULD return pagination metadata for larger result sets

The body of responses containing lists of results SHOULD contain pagination metadata for

larger results sets:

total : Used to inform the client of the total number of available items. This is useful for

calculating the total number of pages or determining how much data remains.

offset or cursor : Information about the current result set, offset , or cursor

position.

limit : The maximum number of items returned.

1.9.2 Filtering

GET /product/v1/orders?cursor=eyJvcmRlcklkIjoxMjN9&limit=10

{

"results": [

{"id": 101, "item": "Item 1"},

{"id": 102, "item": "Item 2"}

// ... more results ...

],

"metadata": {

"total": 100,

"offset": 10,

"limit": 10

}

}

Page 37 of 152

SHOULD use the GET HTTP method and ensure the filter is safe, idempotent and cacheable.

SHOULD use query parameters.

Example

Expressions

GET /product/v1/results?type=Lateral%20Flow%20Test&result=POSITIVE

paths:

/results:

get:

summary: List all test results

description: List all test results.

operationId: getResults

tags:

- results

parameters:

- in: query

name: type

required: false

description: The type of test to filter by.

schema:

type: string

pattern: '^(eq|ne|gt|lt|gte|lte|in|nin|like|ilike)?:?

([^:&]+)$'

description: "RHS filter expression in format '{operation}:

{value}'."

example: "eq:Lateral%20Flow%20Test"

example: Lateral Flow Test

- in: query

name: result

required: false

description: The result type of test to filter by.

schema:

type: string

x-extensible-enum:

- POSITIVE

- NEGATIVE

- UNREADABLE

example: POSITIVE

Page 38 of 152

SHOULD use Right-Hand Side (RHS) operators to filter on specific fields in a resource.

RHS operators allow more sophisticated filtering than simple equality checks. Use these

operators by appending them to the field name with a colon.

Operators

Available RHS operators include:

Operator Description

eq Equal to (default if no operator specified).

ne Not equal to.

gt Greater than.

gte Greater than or equal to.

lt Less than.

lte Less than or equal to.

in Matches any value in a comma-separated list.

nin Does not match any value in a comma-separated list.

like Pattern matching with wildcards (*).

ilike Case-insensitive pattern matching with wildcards (*).

Examples

GET /product/v1/results?

type=Lateral%20Flow%20Test&result=in:POSITIVE,NEGATIVE

GET /product/v1/results?nhsNumber=like:485777*

Page 39 of 152

You can combine multiple filters using the same URL by separating them with ampersands

(&).

Alternative Example

If there is a particularly common query parameter you SHOULD consider providing a new

operation where the search parameter is embedded in the path as a path variable, but only

where it makes sense from an API design perspective and aligns with RESTful resource /

nested resources.

GET /products?category=electronics&price=gte:100

GET /products?category=electronics&price=gte:100&price=lte:500

GET /product/v1/patients/4857773456/results?type=Lateral%20Flow%20Test

Page 40 of 152

1.9.3 Sorting

Default sort order SHOULD be considered as undefined and non-deterministic.

If a explicit sort order is desired, the query parameter sort SHOULD be used with the

following general syntax: {fieldName}|{asc|desc},{fieldName}|{asc|desc} .

paths:

/patients/{nhsNumber}/results:

get:

summary: List all test results for given nhs number.

description: List all test results for given nhs number.

operationId: getResultsForNhs

tags:

- results

parameters:

- in: path

name: nhsNumber

required: true

schema:

type: string

pattern: '^\d{3}(?:-|)?\d{3}(?:-|)?\d{4}$'

description: The nhs number of patient

example: '4857773456'

- in: query

name: type

required: false

description: The type of test to filter by.

schema:

type: string

example: Lateral Flow Test

- in: query

name: result

required: false

description: The result type of test to filter by.

schema:

type: string

x-extensible-enum:

- POSITIVE

- NEGATIVE

- UNREADABLE

example: POSITIVE

Page 41 of 152

Example

GET /product/v1/results?sort=nhsNumber|asc,type|desc

components:

parameters:

sortParam:

in: query

name: sort

description: How to sort the results.

schema:

type: string

pattern: ^[a-z]+(?:[A-Z][a-z]+)+\|(?:asc|desc)(?:,[a-z]+(?:[A-Z]

[a-z]+)*\|(?:asc|desc))*$

examples:

sortBySingleField:

value: nhsNumber|asc

summary: Sort by a single field

sortByMultipleField:

value: nhsNumber|asc,type|desc

summary: Sort by multiple fields

Page 42 of 152

1.10 Testing

1.10.1 Validation / Linting

MUST validate the OpenAPI definition against the OpenAPI Specification and the UKSHA

spectral ruleset.

1.10.2 Unit Testing

MUST perform appropriate Unit Testing to verify the functionality of various components

within the API implementation.

1.10.3 Integration Testing

SHOULD perform Contract Testing to ensure that the API implementation adheres to the

OpenAPI definition.

This is especially important given the OpenAPI definition is the blueprint for onboarding

APIs onto the APIM Platform.

SHOULD perform End-to-End Testing to ensure that all the components of the API work

seamlessly together as a complete system.

Contract Testing End-to-End Testing

Purpose To ensure that services communicate

correctly by validating API contracts.

To verify that all the components of the API work

seamlessly together as a complete system.

When to use When microservices or APIs are involved,

especially in a distributed system.

When you need to test workflows which might

involve multiple API calls, integrations, and the

overall system functionality.

Page 43 of 152

Contract Testing End-to-End Testing

How it's

done

By verifying the API implementation is

communicating as defined in the APIs

OpenAPI definition.

By simulating real user scenarios and executing

tests through the application's UI or API.

What it

reveals

Issues related to API compatibility and

service interactions.

Overall application behaviour, including

performance and user experiences.

1.10.4 Performance Testing

SHOULD perform Load Testing to ensure the API can handle expected levels of load by

simulating normal to high levels traffic to your API.

SHOULD perform Stress Testing to understand the behaviour the API under extreme

conditions and identify breaking points by simulating extreme levels of traffic to your API.

Load Testing Stress testing

Purpose Ensures system can handle normal traffic and

data volume

Determines system's breaking point and

recovery

When to use Before release or major updates Before high-stress events or periodically

How it's done Simulate normal to high levels of traffic Simulate extreme levels of traffic

What it

reveals

System lag, slow performing endpoints, or

crashes

How the system fails or scales under extreme

conditions

1.10.5 Security Testing

SHOULD conduct Vulnerability Scanning To identify known vulnerabilities in your API.

SHOULD conduct Penetration Testing manual and or automated, to identify security

weaknesses in your API.

Page 44 of 152

Vulnerability Scanning Penetration Testing

Purpose To identify known vulnerabilities in

an API or software application.

To simulate an attack on the API to exploit vulnerabilities

and assess security measures.

When to use During the development lifecycle or

regularly to ensure ongoing security.

After significant changes to the API or before a major

release to evaluate security posture.

How it's

done

By using automated tools to scan

code, configuration, and network

settings for vulnerabilities.

Reconnaissance, vulnerability scanning, attempting to

exploit vulnerabilities, and finally providing a detailed

report. Typically performed by a security

specialist/professional.

What it

reveals

A list of known vulnerabilities,

misconfigurations, and

weaknesses in the API.

Specific vulnerabilities that can be exploited, their impact,

and recommendations for remediation.

1.10.6 Recommended Testing Tools

Tool Useful For Open Source

Licence

Spectral CLI Validating your OpenAPI definitions against the OpenAPI

Specification and the UKSHA spectral ruleset.

Apache 2.0

Prism API Mock Servers from OpenAPI definition

Contract Testing for API consumers and developers.

Apache 2.0

Pact Consumer-Driven Contract Testing to ensure that your API meets the

expectations of its consumers.

MIT

Zed Attack Proxy

(ZAP)

Web application vulnerability scanner. Apache 2.0

There is also a catalog of OpenAPI Tooling to support API development and validation.

https://docs.stoplight.io/docs/spectral
https://opensource.org/license/apache-2-0
https://stoplight.io/open-source/prism
https://opensource.org/license/apache-2-0
https://docs.pact.io/
https://opensource.org/license/mit
https://www.zaproxy.org/
https://www.zaproxy.org/
https://opensource.org/license/apache-2-0
https://tools.openapis.org/

Page 45 of 152

1.11 Performance, Reliability &

Monitoring

Page 46 of 152

1.11.1 Performance, Reliability, and

Monitoring

Overview

This section provides guidance on designing APIs for optimal performance, reliability, and

observability. It includes best practices, patterns, and tools to ensure APIs meet high

standards of quality and resilience.

Page 47 of 152

1.11.2 Caching

Caching plays a crucial role in API performance, reducing latency and server load while

improving response times.

APIs SHOULD leverage appropriate caching mechanisms.

APIs SHOULD use a multi-layered caching strategy i.e. implement caching at various layers

(e.g., API Gateway / CDN, application layer, database/persistence layer) to optimise

performance.

APIs SHOULD use distributed caching

Rule of Thumb

APIs SHOULD implement caching when:

Serving frequently accessed, rarely changing data.

Response generation is computationally expensive.

Response times are slow or Requests are timing out.

Handling high volumes of traffic.

Serving static reference data or lookup tables.

APIs SHOULD NOT implement caching when:

Serving volatile data that chances frequently, unless you have a strategy for cache

invalidation.

Use the following flowchart to help you decide:

Page 48 of 152

Yes

No

Yes

No

Yes

No

Yes

No Yes

NoIs the data frequently

accessed?

Is the data rarely changing?

Do Not Cache

Is response generation

expensive or slow?

Do you have a strategy for

cache invalidation?

Would cache hit rate be

high?

Implement Caching

Server-Side vs Client-Side Caching

APIs SHOULD implement server-side response caching and SHOULD avoid implementing

client-side caching except where there are specific requirements that necessitate it. This

approach provides greater control, security, and consistency.

The HTTP caching specification RFC9111 is complex and often inconsistently implemented

by clients, RESTful APIs frequently have nuanced caching requirements which may include

handling data with mixed sensitivity levels that require careful cache management which

generic client implementations might not handle correctly, furthermore client-side caching

can lead to sensitive data being stored in uncontrolled environments.

Server-side caching reduces the risk of cached data leakage across different client contexts,

ensures that caching policies are correctly applied regardless of client capabilities and that

all clients receive consistent data.

In addition server-side caching provides greater control over what data is cached and for

how long, offers fine-grained cache control which can be implemented based on resource

type, authorisation level, or other factors and enables the ability to invalidate cached content

when underlying data changes.

As such APIs SHOULD follow the best practice of defaulting the Cache-Control response

header to the following value to prevent any default client caching behaviors.

Whilst this may seem inefficient, there are actually a good reasons for doing so, Preventing

any accidental client caching of sensitive/secure data, meaning it's much safer to default to a

posture of no client caching by default.

Cache-Control: no-cache, no-store, must-revalidate, max-age=0

https://datatracker.ietf.org/doc/html/rfc9111

Page 49 of 152

Server-Side Response Caching

APIs SHOULD implement server-controlled response caching that is independent of client-

specified caching headers.

APIs SHOULD utilise their respective development ecosystem and take advantage of the

available caching tools/libraries to support server-side response caching, for example if you

are building your API with dotnet there is an output caching middleware specifically for sever

controlled caching, and for python there is a framework agnostic caching library called

cachews.

When utilising an API gateway, APIs SHOULD make use of any response caching functionality,

as this helps to reduces the load on the backend API; Azure Api Management (APIM)

provides this functionality through the use of policies.

Implementation Approaches

Basic Implementation Pattern

The general pattern for implementing server-side response caching is:

1. Check if request can be served from cache.

2. If cached, return cached response.

3. If not cached, generate response and store in cache.

4. Return fresh response.

Yes

No

Request Arrives Cache Key Lookup Cache Hit?

Return Cached Response

Generate Fresh Response Cache Response Return Fresh Response

Client-Side Caching

Client-side caching SHOULD be avoided. However in addition to server-side response

caching, there are cases where client-side caching MAY be appropriate:

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://github.com/Krukov/cashews
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-cache

Page 50 of 152

1. When offline capability is required (e.g., mobile applications)

2. For static resources that rarely change (e.g., images, stylesheets)

3. To reduce network traffic in bandwidth-constrained environments

If your API really requires supporting HTTP caching , please observe the following rules:

MAY responsibly enable HTTP caching explicitly for any operations that require it.

MUST document all cacheable GET , HEAD , and POST endpoints by declaring the support of

Cache-Control , Vary , and ETag headers in response.

MUST NOT define the Expires header to prevent redundant and ambiguous definition of

cache lifetime.

MUST take care to specify the ability to support caching by defining the right caching

boundaries, i.e. time-to-live and cache constraints, by providing sensible values for Cache-

Control and Vary in your service.

APIs SHOULD use appropriate Cache-Control directives:

Directive Purpose Example

max-age How long the response can be cached (in

seconds)

Cache-Control: max-age=3600

no-cache Must revalidate before using cached content Cache-Control: no-cache

no-store Don't cache the response at all Cache-Control: no-store

private Only browser can cache, not intermediaries Cache-Control: private, max-age=600

public Response can be cached by any cache Cache-Control: public, max-

age=86400

Operations which require the use of the Authorization Header i.e. OAuth protected

endpoints, SHOULD also contain the private directive.

Cache-Control: private, must-revalidate, max-age=60

https://datatracker.ietf.org/doc/html/rfc9111#section-5.2
https://datatracker.ietf.org/doc/html/rfc9110#section-12.5.5
https://datatracker.ietf.org/doc/html/rfc9110#section-8.8.3
https://datatracker.ietf.org/doc/html/rfc9111#section-5.3
https://datatracker.ietf.org/doc/html/rfc9111#section-5.2
https://datatracker.ietf.org/doc/html/rfc9111#section-5.2
https://datatracker.ietf.org/doc/html/rfc9110#section-12.5.5

Page 51 of 152

Example Implementations

Read-Only Reference Data

User-Specific Data (Non-Sensitive)

Time-Sensitive Data

Sensitive Data

Considerations for Special Cases

Pagination

Paginated responses SHOULD use cache control headers that decrease in duration for later

pages:

Search Results

Search endpoints MAY cache results for popular queries but SHOULD use shorter cache

durations:

Cache-Control: public, max-age=86400

Cache-Control: private, max-age=300

Cache-Control: public, max-age=60

Cache-Control: no-store

First page might be cached longer

Cache-Control: public, max-age=3600

Later pages cached for shorter periods

Cache-Control: public, max-age=600

Cache-Control: public, max-age=300

Page 52 of 152

Versioned APIs

Versioned API endpoints MAY use longer cache durations since their responses are stable

by definition:

Multi-Layered Caching Strategy

APIs SHOULD take a multi-layered approach to implement caching.

The diagrams below illustrates an example of multi-layered caching that provides

performance benefits at different levels of your architecture.

This is a generalised example and some of these layers might not be applicable for your

application.

Cache-Control: public, max-age=604800

Note

Page 53 of 152

Flowchart Diagram

Page 54 of 152

Sequence Diagram

DatabaseDatabase Cache
Query CacheApplication ServerApplication Cache

Redis/MemcachedAPI GatewayContent Delivery NetworkBrowser CacheClient

R d

Page 55 of 152

Cache Miss

Cache Hit

Cache Miss

Cache Hit

Cache Miss

Cache Hit

Cache Miss

Cache Hit

Cache Miss

Cache Hit

Store

Store

Store

Store

Store

Client

Browser Cache

Content Delivery Network

API Gateway Cache

Application Server

Application Cache

Redis/Memcached

Database Cache

Query Cache

DatabaseDatabase Cache
Query CacheApplication ServerApplication Cache

Redis/MemcachedAPI GatewayContent Delivery NetworkBrowser CacheClient

alt [DB Cache Hit]

[DB Cache Miss]

alt [Application Cache Hit]

[Application Cache Miss]

alt [API Gateway Cache Hit]

[API Gateway Cache Miss]

alt [CDN Cache Hit]

[CDN Cache Miss]

alt [Browser Cache Hit]

[Browser Cache Miss]

Request data

Return cached data

Forward request

Return cached data

Return cached data

Forward request

Return cached data

Return & store cached data

Return & store cached data

Forward request

Check app cache

Return cached data

Return response

Return & store response

Return & store response

Return & store response

Query data

Return cached data

Query database

Return & cache results

Return results

Store in app cache

Return response

Store & return response

Store & return response

Store & return response

Page 56 of 152

Benefits of Each Caching Layer

Browser Cache

Eliminates network requests completely for repeat visits.

Instant response times for cached resources.

Reduces bandwidth consumption for the end user.

SHOULD only be used for non-sensitive, static resources.

MUST NOT be relied upon for critical application functionality.

Content Delivery Network (CDN)

Geographical distribution reduces latency by serving from edge locations.

Massive scalability to handle traffic spikes.

Offloads traffic from origin servers.

Ideal for static assets, public API responses, and infrequently changing data.

API Gateway Cache

Centralised caching for all API endpoints.

Consistent policy enforcement across all services.

Reduces load on backend application servers.

Enables analytics on cache performance at the API level.

Application Cache (Redis/Memcached)

High-speed data access for frequently used data.

Flexible invalidation based on application-specific logic.

Database

Warning

Page 57 of 152

Supports complex data structures beyond simple key-value pairs.

Can be shared across multiple application instances.

Database Cache/Query Cache

Optimises repeated queries without application changes.

Reduces database load for read-heavy workloads.

Often built into database systems (e.g., MySQL Query Cache, PostgreSQL).

Transparent to the application in many cases.

Multi-Layer Advantages

Using this approach, APIs can achieve significantly better performance and scalability while

reducing infrastructure costs.

Defence in depth: Even if one cache fails, others may still provide performance benefits.

Optimised resource usage: Most expensive operations (i.e. database queries) are cached

at multiple levels.

Improved resilience: Distributed caching improves availability and fault tolerance.

Targeted optimisation: Each layer can be optimised for specific types of data and access

pattern.

Cache Invalidation Strategies

APIs MUST implement appropriate cache invalidation strategies to ensure data consistency

while maintaining performance benefits. Effective cache invalidation is critical to prevent

serving stale or incorrect data to clients.

Types of Cache Invalidation Strategies

Time-Based Expiration

APIs MUST implement time-based expiration for all cacheable resources:

Page 58 of 152

MUST set appropriate max-age values based on data volatility.

SHOULD use shorter expiration times for frequently changing data.

MAY use longer expiration times for static reference data.

MUST consider the business impact of serving stale data when setting expiration times.

APICacheClient

APICacheClient

Cache entry created with
max-age=3600

Within TTL period

After 3600 seconds
cache entry expires

After TTL period

Request resource

Return cached resource

Request resource

Forward request (cache miss)

Return fresh data

Return & store new data

Event-Based Invalidation

For data that changes unpredictably, APIs SHOULD implement event-based invalidation:

Page 59 of 152

MUST trigger cache invalidation when the underlying data changes.

SHOULD use publish/subscribe mechanisms to notify cache systems of changes.

SHOULD implement targeted invalidation for specific resources rather than flushing entire

caches.

MAY use message queues or webhooks for distributed cache invalidation.

EventBusDBAPICacheClient

EventBusDBAPICacheClient

Initial request and caching

Data update occurs

Subsequent request gets fresh data

GET /resource/123

Fetch data

Return data

Store in cache

Return response

PUT /resource/123

Update data

Confirm update

Publish "resource.123.updated" event

Invalidate cache for /resource/123

Return success response

GET /resource/123

Cache miss (invalidated)

Fetch fresh data

Return updated data

Store updated data

Return updated response

Page 60 of 152

Resource Versioning

APIs SHOULD consider resource versioning as a complementary strategy:

MAY include version identifiers (e.g., ETags , timestamps) in cache keys.

MAY use content-based hashing for automatic versioning of static resources.

SHOULD NOT rely on versioning alone for frequently updated resources.

DBAPICacheClient

DBAPICacheClient

Initial request

Data updated to v2

Subsequent request with new version

GET /resource/123

Fetch data

Data with version v1

Store with key "/resource/123:v1"

Return response with ETag "v1"

GET /resource/123

Check version

Current version is v2

Look for "/resource/123:v2"

Cache miss

Fetch data

Data with version v2

Store with key "/resource/123:v2"

Return response with ETag "v2"

Page 61 of 152

When to Use Each Strategy

Strategy When to Use When to Avoid

Time-Based

Expiration

MUST use for all cacheable resources as

a baseline strategy

SHOULD NOT rely solely on for critical,

frequently changing data

Event-Based

Invalidation

SHOULD use for dynamic data with

unpredictable update patterns

SHOULD NOT use if update events cannot be

reliably captured or propagated

Resource

Versioning

SHOULD use for static assets and rarely

changing resources

SHOULD NOT use as the only strategy for

frequently updated resources

Hybrid Approaches

APIs SHOULD implement hybrid invalidation approaches for optimal results:

Time-Based + Event-Based

SHOULD set reasonable TTLs as a fallback.

MUST trigger invalidation on data changes.

MUST ensure cache consistency in distributed environments.

Versioning + Time-Based

MAY version resources for major changes.

SHOULD set appropriate TTLs for minor variations.

SHOULD use conditional requests with ETags .

Page 62 of 152

Rarely Sometimes Frequently Unpredictably

Evaluate Resource

How frequently

does it change?

Long TTL + Versioning Medium TTL + Event-Based Short TTL + Event-Based Event-Based + Versioning

Example: Static Assets
Example: Product

Information
Example: Price Data Example: User Preferences

Cache Key Strategies

APIs SHOULD carefully design cache keys to support effective invalidation:

SHOULD use hierarchical keys to enable invalidation of related resources.

MAY include relevant parameters in cache keys (e.g., user roles for permission-dependent

content)

MUST avoid including sensitive information in cache keys.

SHOULD document cache key formats to aid debugging and maintenance.

Page 63 of 152

Poor Cache Keys

data_123

info_abc

result_xyz

cache_456

Good Cache Keys

users:123:profile

users:123:permissions

products:category:electronics

products:id:456

Performance Metrics

APIs using caching SHOULD monitor:

Cache Hit Rate: Percentage of requests served from cache.

Cache Latency: Time to retrieve data from cache.

Origin Latency: Time to retrieve data from the origin.

Cache Size: Memory/storage consumption by the cache.

APIs SHOULD aim for a cache hit rate of at least 80% for cacheable resources.

Page 64 of 152

Response Headers for Monitoring

APIs MAY consider adding headers to help with debugging and monitoring:

Example metrics capture

The below pseudo python example shows how you could manually log caching statistics,

however there might libraries that could collect this telemetry for you with OpenTelemetry

instrumentation such as opentelemetry-instrumentation-fastapi.

X-Cache: HIT

X-Cache-TTL-Remaining: 286

X-Cache-Key: products:fec65fb3-1e5e-4ff2-a6e0-a423f77f0000

X-Cache: HIT

X-Cache-TTL-Remaining: 286

X-Cache-Key: products:list:limit=10:offset=0:sort=name|asc

Python example of cache monitoring

def get_cached_response(cache_key):

start_time = time.time()

cached_response = cache.get(cache_key)

lookup_time = time.time() - start_time

metrics.timing('cache.lookup_time', lookup_time)

if cached_response:

metrics.increment('cache.hit')

return cached_response

else:

metrics.increment('cache.miss')

return None

https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html

Page 65 of 152

1.11.3 Resilience Patterns

Resilience patterns are essential for building robust APIs that can gracefully handle

unexpected failures or delays in dependent systems. This section provides guidelines for

implementing retries, timeouts, circuit breakers, bulkheads, and fallbacks in API design.

These patterns SHOULD be applied where appropriate to ensure reliability, scalability, and

user experience.

Retries

Retries allow APIs to recover from transient failures.

APIs SHOULD implement retries for idempotent operations (e.g., GET , PUT , DELETE)

where a transient failure is likely to succeed on subsequent attempts.

Retries SHOULD NOT be used for non-idempotent operations (e.g., POST) unless

specifically designed for retry safety.

A backoff strategy (e.g., exponential backoff with jitter) SHOULD be used to prevent

cascading failures.

Retries MUST be capped with a maximum retry count to avoid infinite loops or

unnecessary resource consumption.

https://en.wikipedia.org/wiki/Exponential_backoff
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Page 66 of 152

DependencyAPIClient

DependencyAPIClient

Apply backoff strategy

Increase backoff with jitter

If max retries reached, return error

Request

Initial Request

Transient Failure

Retry

Transient Failure

Retry

Success

Response

Example

In the following python example, we show data retrieval from a distributed database service

that occasionally experiences network issues and use the Tenacity library to handle retries

with exponential backoff and jitter. The @retry decorator configures the retry behaviour to

attempt up to 3 times for transient exceptions only, with exponential backoff starting at

100ms and built-in jitter.

https://tenacity.readthedocs.io/en/latest/

Page 67 of 152

import logging

from tenacity import (

retry,

stop_after_attempt,

wait_random_exponential,

retry_if_exception_type,

before_sleep_log

)

logger = logging.getLogger(__name__)

class TransientException(Exception):

"""Represents a temporary failure that may succeed on retry"""

pass

class ServiceException(Exception):

"""Represents a permanent failure or failure after retries"""

pass

@retry(

retry=retry_if_exception_type(TransientException),

stop=stop_after_attempt(3),

wait=wait_random_exponential(multiplier=0.1, max=2),

before_sleep=before_sleep_log(logger, logging.WARNING),

reraise=True

)

def get_customer_data(customer_id):

"""

Retrieve customer data with automatic retry handling for transient

failures.

This function will retry up to 2 times (3 attempts total) when

transient

exceptions occur, using exponential backoff with jitter to prevent

overwhelming the database.

"""

try:

return database_service.get_customer(customer_id)

except TransientException:

Will be automatically retried by Tenacity

raise

except Exception as e:

Convert unexpected exceptions to ServiceException (not retried)

raise ServiceException(f"Failed to retrieve customer data:

{str(e)}") from e

Page 68 of 152

Timeouts

Timeouts prevent operations from hanging indefinitely.

APIs SHOULD define timeouts for all external calls to dependent systems or services.

Timeout values SHOULD be carefully chosen based on the performance characteristics of

the dependent system and the API's SLA requirements.

APIs SHOULD NOT rely on default or unspecified timeout settings, as these can vary

widely across libraries and tools.

A timeout SHOULD trigger a fallback mechanism or propagate an appropriate error to the

client.

DependencyAPIClient

DependencyAPIClient

Start Timeout Timer

Timeout Threshold Exceeded

alt [Response within timeout
period]

[Timeout occurs]

Request

Send Request

Timely Response

Success Response

Cancel Request (if possible)

Timeout Error Response

Page 69 of 152

Example

In this python example, we set a 5-second timeout for the request to an external API using

the Requests library. If the request takes longer than this, a Timeout exception is raised,

allowing us to handle it gracefully with a fallback mechanism or propagate an appropriate

error to the client.

Circuit Breakers

Circuit breakers protect systems from cascading failures by halting requests to unhealthy

dependencies.

Circuit breakers SHOULD be implemented for calls to external systems that are critical to

the API's operation.

APIs SHOULD configure circuit breakers with thresholds for failure rates and recovery

intervals.

When a circuit breaker is open, the API MUST provide a meaningful error response or

fallback mechanism.

Circuit breakers MUST NOT be used for internal components that are highly reliable and

tightly coupled, as they introduce unnecessary complexity.

import requests

from requests.exceptions import Timeout, RequestException

try:

Set a 5-second timeout for the request

response = requests.get('https://api.example.com/data', timeout=5)

data = response.json()

except Timeout:

print("The request timed out")

except RequestException as e:

print(f"Request error: {e}")

https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts

Page 70 of 152

Flowchart Diagram

Failure threshold exceeded

Delay

Success

Failure

CLOSED

OPEN

HALF OPEN

Sequence Diagram

Page 71 of 152

Page 72 of 152

DependencyAPI with Circuit BreakerClient

Circuit State: CLOSED

Failure threshold exceeded

Circuit State: OPEN

Request rejected without calling dependency

Request 1

Forward Request

Success Response

Response

Request 2

Forward Request

Failure

Error Response

Request 3

Forward Request

Failure

Error Response

Request 4

Circuit Open Error

Page 73 of 152

Example

In this python example, we use the circuitbreaker library to protect calls to a

recommendation service. The circuit breaker is configured to open after 3 failures out of 5

attempts (60% failure rate) and will stay open for 30 seconds before allowing a test request.

When the circuit is open, we fallback to a cache of popular products instead of personalised

recommendations.

DependencyAPI with Circuit BreakerClient

After timeout period

Circuit State: HALF-OPEN

Circuit State: CLOSED

Request 5

Test Request

Success Response

Response

https://pypi.org/project/circuitbreaker/

Page 74 of 152

import logging

from circuitbreaker import circuit, CircuitBreakerError

logger = logging.getLogger(__name__)

Configure the circuit breaker:

- fails when 3 out of 5 attempts fail (60% failure rate)

- resets after 30 seconds in open state

@circuit(failure_threshold=3, recovery_timeout=30,

expected_exception=Exception)

def get_product_recommendations(user_id):

"""

Retrieve product recommendations from the recommendation service.

This function is protected by a circuit breaker that will open after

3 failures out of 5 attempts, preventing further calls to the

potentially

failing service for 30 seconds.

"""

try:

return recommendation_service.get_recommendations(user_id)

except Exception as e:

logger.error(f"Recommendation service error: {str(e)}")

raise # The circuit breaker will catch this

def get_recommendations_with_fallback(user_id):

"""

Get product recommendations with circuit breaker protection and

fallback.

"""

try:

This call is protected by the circuit breaker decorator

return get_product_recommendations(user_id)

except CircuitBreakerError:

logger.warning(f"Circuit breaker open, using fallback for user

{user_id}")

Fallback to a simpler recommendation strategy

return get_fallback_recommendations(user_id)

except Exception as e:

logger.error(f"Unexpected error in recommendations: {str(e)}")

return []

def get_fallback_recommendations(user_id):

"""

Provides a fallback when the recommendation service is unavailable.

Returns popular products instead of personalised recommendations.

Page 75 of 152

Bulkheads

Bulkheads isolate failures to prevent them from impacting the entire system.

APIs SHOULD use bulkheads to limit the impact of resource exhaustion (e.g., thread pools,

connection pools) caused by a specific dependency or client.

Bulkheads MUST be configured to allocate capacity proportionate to the criticality of the

resource or operation.

APIs MUST NOT allow a single poorly performing client or dependency to consume all

available resources, degrading the experience for others.

Examples

In an e-commerce platform, the payment service, user service, and search service can be

isolated using bulkheads. If the search service experiences high traffic or failure, the payment

and user services remain unaffected, ensuring critical operations like checkout continue to

function.

Without Bulkhead Pattern

When Search service fails, it consumes all available resources in the shared pool, causing

Payment and User services to suffer as well.

"""

return popular_products_cache.get_popular_items(5)

Page 76 of 152

Without Bulkhead Pattern

Failure/OverloadResources Exhausted Resources Exhausted

Client Requests

API Gateway

Shared Thread Pool

Payment Service User Service Search Service

With Bulkhead Pattern

Even though Search service has failed, Payment and User services continue to function,

because resources are isolated with bulkheads.

Page 77 of 152

Bulkhead Pattern

Failure/Overload

Client Requests

API Gateway

Thread Pool 1 Thread Pool 2 Thread Pool 3

Payment Service User Service Search Service

Python Example

In this Python example, we implement the bulkhead pattern using ThreadPoolExecutor

from the concurrent.futures module. The code creates separate thread pools for critical

and non-critical operations, preventing failures in one service from consuming resources

needed by others.

Page 78 of 152

Usage example:

import asyncio

from concurrent.futures import ThreadPoolExecutor

from functools import partial

class ServiceExecutors:

def __init__(self):

Dedicated pool for critical operations

self.critical_pool = ThreadPoolExecutor(

max_workers=4,

thread_name_prefix="critical"

)

Pool for non-critical operations

self.normal_pool = ThreadPoolExecutor(

max_workers=10,

thread_name_prefix="normal"

)

async def execute_critical(self, func, *args):

return await asyncio.get_event_loop().run_in_executor(

self.critical_pool,

partial(func, *args)

)

async def execute_normal(self, func, *args):

return await asyncio.get_event_loop().run_in_executor(

self.normal_pool,

partial(func, *args)

)

executors = ServiceExecutors()

Payment processing - uses the critical pool (4 threads max)

async def process_payment(payment_id):

return await executors.execute_critical(payment_service.process,

payment_id)

Product search - uses the normal pool (10 threads max)

async def search_products(query):

return await executors.execute_normal(search_service.find, query)

Even if search_products overloads its thread pool,

payment processing remains unaffected

Page 79 of 152

This implementation demonstrates how:

Critical operations like payments get dedicated resources (4 threads)

Non-critical operations like search get separate resources (10 threads)

If the search service becomes overloaded, payment processing continues normally

Each service has its failure domain contained within its own thread pool

Fallbacks

Fallbacks provide alternative behaviour when a dependency fails.

APIs MUST implement fallbacks for critical operations where failure would significantly

impact the user experience.

Fallbacks SHOULD provide meaningful degraded functionality (e.g., cached data,

placeholder values) rather than returning generic errors.

APIs MUST NOT use fallbacks that violate business logic, security, or data integrity

requirements.

Where fallbacks are implemented, the API SHOULD log the use of fallback mechanisms

for monitoring and debugging purposes.

Example

If a weather API fails, the fallback could provide cached weather data from the last

successful response. For a stock price API, a fallback might return the last known price or a

default value.

Page 80 of 152

General Guidance

Resilience patterns MUST be chosen based on the specific context and requirements of

the API.

Combinations of patterns SHOULD be used to address complex failure scenarios (e.g.,

retries with timeouts and circuit breakers).

APIs MUST log and monitor resilience events (e.g., retries, circuit breaker state changes)

to enable proactive troubleshooting and optimisation.

import requests

Simulate a cache (in a real app, this would be persistent storage)

weather_cache = {

"London": {"temperature": 15, "condition": "Cloudy"},

"New York": {"temperature": 20, "condition": "Sunny"}

}

def get_weather(city):

"""Get weather data with fallback to cache if API fails"""

try:

Try to get fresh data from the API

response = requests.get(

f"https://api.weather.example.com/current?city={city}",

timeout=2

)

response.raise_for_status()

return response.json()

except Exception:

API call failed, use fallback

print(f"Weather API failed. Using cached data for {city}")

Return cached data if available, or a default

if city in weather_cache:

return weather_cache[city]

else:

return {"temperature": None, "condition": "Unknown"}

Example usage

weather = get_weather("London")

print(f"Weather: {weather['temperature']}°C, {weather['condition']}")

Page 81 of 152

Overuse or misuse of resilience patterns MUST NOT degrade overall performance or

introduce unnecessary latency.

Page 82 of 152

1.11.4 Monitoring & Observability

Effective monitoring and observability MUST be integrated into all APIs to ensure

performance, reliability, continuous improvement, and meet any Service Level Agreements

(SLAs) and compliance requirements. This section provides guidance on best practices,

including the use of OpenTelemetry and key metrics to track.

Monitoring vs. Observability

While often used interchangeably, monitoring and observability serve distinct purposes in API

management. Monitoring focuses on tracking predefined metrics and known system states,

typically answering "is the system working as expected?" through dashboards and alerts.

Observability, on the other hand, provides the capability to understand unknown system

states and answer new questions without deploying additional instrumentation. It combines

metrics , logs , and traces to give comprehensive insights into system behaviour.

Effective API management requires both, monitoring for known issues and observability for

debugging complex, unforeseen problems that may emerge in distributed systems.

General Guidance

MUST implement monitoring to gain visibility into API performance and health.

Monitoring SHOULD be designed to provide actionable insights for troubleshooting and

optimisation.

APIs SHOULD adopt the observability standard OpenTelemetry for distributed tracing,

metrics, and logs and ensure consistency across all APIs regardless of language /

frameworks.

APIs MUST NOT rely on ad-hoc monitoring solutions that lack consistency and

integration.

Monitoring MUST NOT introduce significant performance overhead that degrades the

API's functionality.

https://opentelemetry.io/
https://opentelemetry.io/

Page 83 of 152

APIs in development or testing environments SHOULD use monitoring to identify issues

early but MUST NOT rely on it as a substitute for proper testing.

Monitoring systems MUST integrate with alerting tools such as Prometheus to notify

teams of critical issues.

SHOULD implement health checks to regularly verify the availability of API endpoints.

SHOULD establish a centralised logging system to aggregate logs from all API services

for easier analysis.

MUST NOT neglect documentation of monitoring setups, as this MUST be accessible to

all relevant teams.

Recommended Metrics

APIs SHOULD be tracking the following key metrics to ensure comprehensive monitoring:

Latency

MUST measure the time taken to process requests, including response times for various

endpoints.

SHOULD categorise latency measurements by percentiles (e.g., p50, p95, p99) to identify

performance issues.

High latency MUST trigger alerts for investigation.

MUST NOT ignore latency spikes, as they can indicate underlying problems with the

service.

Traffic

MUST monitor the volume of requests to understand usage patterns, traffic trends and

detect anomalies.

SHOULD include metrics such as requests per second (RPS) and client IP counts to gauge

load.

https://prometheus.io/

Page 84 of 152

MUST NOT underestimate the importance of traffic analysis, as it helps in capacity

planning.

Errors

MUST track error rates (e.g., 4xx and 5xx responses) to identify issues with API

endpoints.

SHOULD categorise errors by type where appropriate (e.g., client errors, server errors) to

facilitate troubleshooting.

MUST NOT ignore increasing error rates; they MUST prompt immediate investigation.

Saturation

MUST monitor resource utilisation (e.g., CPU, memory, database connections, thread

pools) to detect saturation points.

SHOULD set alerts for resource thresholds to proactively address potential bottlenecks.

MUST NOT assume that higher resource utilisation is acceptable without appropriate

scaling strategies.

DORA Metrics

To align with industry best practices, API teams SHOULD implement the four key metrics of

DORA (DevOps Research and Assessment) to measure development and operational

performance:

Throughput

Lead Time for Changes: This metric measures the time it takes for a code commit or

change to be successfully deployed to production. It reflects the efficiency of your

software delivery process.

Deployment Frequency: This metric measures how often application changes are

deployed to production. Higher deployment frequency indicates a more efficient and

responsive delivery process.

https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/

Page 85 of 152

Stability

Change Failure Rate: This metric measures the percentage of deployments that cause

failures in production, requiring hotfixes or rollbacks. A lower change failure rate indicates

a more reliable delivery process.

Mean Time to Recovery (MTTR): Measure the time taken to recover from failures.

Tools and Standards

Tool/Standard Description

OpenTelemetry A vendor-neutral framework for collecting and exporting telemetry data, allowing teams to

choose their preferred backend for analysis and visualisation. It supports various

programming languages and platforms, making it a versatile choice for API observability.

Grafana A powerful open-source analytics and monitoring platform that integrates with various

data sources, including Prometheus. It provides rich visualisations and dashboards for

real-time monitoring and analysis of API performance metrics.

Grafana Loki A log aggregation system designed to work seamlessly with Grafana. It allows for the

collection, storage, and querying of logs, making it easier to correlate logs with metrics

and traces for comprehensive observability.

Prometheus An open-source monitoring and alerting toolkit designed for reliability and scalability,

particularly suited for dynamic cloud environments. It collects metrics from configured

targets at specified intervals, evaluates rule expressions, and can trigger alerts based on

those evaluations.

ELK Stack

(Elasticsearch,

Logstash, Kibana)

A popular open-source stack for log management and analysis. Elasticsearch stores and

indexes logs, Logstash processes and ingests logs from various sources, and Kibana

provides a web interface for visualising and exploring log data.

https://opentelemetry.io/
https://opentelemetry.io/
https://grafana.com/oss/grafana/
https://prometheus.io/
https://grafana.com/oss/loki/
https://prometheus.io/
https://www.elastic.co/elastic-stack
https://www.elastic.co/elastic-stack
https://www.elastic.co/elastic-stack

Page 86 of 152

1.12 Governance

TODO

Approval Process: Guidelines for reviewing and changes to the guidelines or spectral

rules.

Governance automation: Using automated tools (linters, validators) to ensure compliance

with the guidelines.

Specteral Rules

PR process

Change Management: Version control and change request procedures.

Page 87 of 152

1.13 Data Standards

Data standards provide a common language for representing information, enabling different

systems to understand and process data without ambiguity.

Consideration MUST be given to the use of appropriate data standards to ensure

consistency and ease of integration.

1.13.1 Core Principles

APIs MUST use consistent data formats and standards across all endpoints.

APIs MUST validate all incoming data against defined schemas.

APIs MUST follow data protection and privacy requirements for sensitive data.

APIs MUST document any deviations from standard formats.

1.13.2 Data Models vs. Data Representations

It is important to differentiate between data models and data representations:

Data Model defines the structure, relationships, and constraints of data within a specific

domain. It is a conceptual blueprint that outlines how data elements relate to each other

and the rules governing their use.

Data Representation is the concrete format in which data is serialised for exchange or

storage. For RESTful APIs, this is commonly JSON.

1.13.3 Industry Standards

APIs SHOULD adopt a domain-specific UKHSA data model or adopt an existing industry

standard where appropriate while still using JSON as its core/principal data representation.

https://datatracker.ietf.org/doc/html/rfc8259
https://confluence.collab.test-and-trace.nhs.uk/display/TCFPP/Logical+Data+Model
https://datatracker.ietf.org/doc/html/rfc8259

Page 88 of 152

When defining new APIs or uplifting APIs it is important to look for industry standards and

open standards that have already been adopted within UKHSA or by other related

organisations and industries, such as FHIR for health data which is used by NHS England and

OMOP for data analysis.

FHIR Implementations

If implementing the FHIR standard:

APIs MUST use FHIR UK Core profiles where they exist.

APIs MUST document any extensions to standard FHIR resources.

APIs SHOULD implement FHIR REST API patterns as described in the FHIR specification.

APIs MAY create custom FHIR profiles when UK Core profiles don't meet your needs.

OMOP Implementations

If implementing the OMOP Common Data Model:

APIs MUST use standardised clinical tables as defined in the OMOP CDM specification.

APIs MUST map source terminologies/vocabularies to OMOP standard concepts.

APIs SHOULD implement OMOP data quality assessment procedures.

APIs MAY create ETL processes to synchronised between OMOP and other standards

such as FHIR when both are needed.

1.13.4 Terminology Standards

Terminology (or controlled vocabularies) play a crucial role in ensuring that data has a

consistent and unambiguous meaning.

Using common terminologies is essential for data quality, consistency, and interoperability.

Terminology is not the same as FHIR. FHIR provides the structure and format for exchanging

data, while terminology defines the meaning of the data elements within that structure.

https://hl7.org/fhir/
https://ohdsi.github.io/CommonDataModel/
https://digital.nhs.uk/services/fhir-uk-core
https://hl7.org/fhir/http.html
https://ohdsi.github.io/CommonDataModel/
https://ohdsi.github.io/DataQualityDashboard/

Page 89 of 152

APIs MUST adopt standardised terminologies (e.g., SNOMED CT, ICD-10, dm+d) whenever

applicable.

APIs SHOULD specify the required terminologies for each data element within their OpenAPI

definition, taking into account regional differences.

Terminology Implementations

APIs SHOULD use SNOMED CT for clinical terms.

APIs SHOULD use ICD-10 for medical diagnosis.

APIs SHOULD use dm+d for medicines and devices in England.

APIs SHOULD document any regional terminology variations for Scotland, Wales, and

Northern Ireland.

APIs SHOULD provide terminology mappings when exchanging data across regions

1.13.5 Additional Considerations

Compliance

If there are regulatory or industry compliance requirements that mandate the use of specific

data standards, these MUST be adhered to.

Interoperability

When APIs are designed to exchange data with external systems, especially within a specific

industry or domain, a recognised data standard SHOULD be adopted. This ensures that both

the API and the consuming systems can understand the data exchanged.

Over-Engineering

Data standards MUST NOT be applied blindly to every API. If an API's scope is extremely

narrow, if it is not intended for data exchange, and if there are no compelling reasons for

standardisation, then a custom model and representation may be more appropriate.

https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://classbrowser.nhs.uk/#/book/ICD-10-5TH-Edition
https://www.nhsbsa.nhs.uk/pharmacies-gp-practices-and-appliance-contractors/dictionary-medicines-and-devices-dmd
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://classbrowser.nhs.uk/#/book/ICD-10-5TH-Edition
https://www.nhsbsa.nhs.uk/pharmacies-gp-practices-and-appliance-contractors/dictionary-medicines-and-devices-dmd

Page 90 of 152

Performance Degradation

If adopting a data standard would introduce significant overhead in terms of processing or

data size, and if interoperability is not a critical requirement, a standard MUST NOT be forced

into the design.

Fit for purpose

If the data standard doesn't have the necessary types or fields to correctly describe the data,

it MUST NOT be forced into the design.

Internal APIs (Limited Scope)

In cases where APIs are purely internal and their data is not intended for broader exchange,

the use of data standards MAY be considered if it would improve the consistency between

internal services.

1.13.6 Government Data Standards

As per the GDS Guidence you SHOULD design your APIs to follow appropriate government

data standards in the Data Standards Catalog and External Standards Catalog.

Other relevent standards

JSON (RFC8259) is a lightweight, text-based, language-independent data interchange

format.

GeoJSON (RFC7946) is a geospatial data interchange format based on JavaScript Object

Notation (JSON).

See Common Data Types for additional standards.

https://www.gov.uk/guidance/gds-api-technical-and-data-standards#follow-the-technology-code-of-practice-and-other-standards
https://alphagov.github.io/data-standards-authority/standards/
https://alphagov.github.io/data-standards-authority/standards/external-standards
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7946

Page 91 of 152

1.14 Common Data Types

API types MUST use standard data formats.

Open API (based on JSON Schema Validation vocabulary) defines formats from ISO and IETF

standards for date/time, integers/numbers and binary data.

APIs MUST use these formats, whenever applicable:

1.14.1 OpenAPI Formats Registry

The following list is provided for brevity and includes examples but please use OpenAPI

Formats Registry as the master list.

OpenAPI

format

OpenAPI

type

Specification Example

bigint integer arbitrarily large signed integer

number

7.72E+19

binary string base64url encoded byte

sequence following RFC7493

Section 4.4

"VGVzdA=="

byte string base64url encoded byte

following RFC7493 Section 4.4

"VA=="

date string RFC3339 internet profile - subset

of ISO 8601.

"2019-07-30"

date-time string RFC3339 internet profile - subset

of ISO 8601.

"2019-07-30T06:43:40.252Z"

decimal number arbitrarily precise signed decimal

number

3.141593

double number binary64 double precision decimal

number - see IEEE 754-2008/ISO

3.141593

https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.4.md#data-types
https://tools.ietf.org/html/draft-bhutton-json-schema-validation-00#section-7.3
https://spec.openapis.org/registry/format/
https://spec.openapis.org/registry/format/
https://datatracker.ietf.org/doc/html/rfc7493#section-4.4
https://datatracker.ietf.org/doc/html/rfc7493#section-4.4
https://datatracker.ietf.org/doc/html/rfc7493#section-4.4
https://datatracker.ietf.org/doc/html/rfc7493#section-4.4
https://datatracker.ietf.org/doc/html/rfc7493#section-4.4
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#ref-ISO8601
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#ref-ISO8601
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

Page 92 of 152

OpenAPI

format

OpenAPI

type

Specification Example

60559:2011

duration string RFC3339 - subset of ISO 8601. "P1DT3H4S"

email string RFC5322 "example@example.com"

float number binary32 single precision decimal

number - see IEEE 754-2008/ISO

60559:2011

3.141593

hostname string RFC1034 "www.example.com"

idn-email string RFC6531 "hello@bücher.example"

idn-

hostname

string RFC5890 "bücher.example"

int32 integer 4 byte signed integer between

-231 and 231-1

7.72E+09

int64 integer 8 byte signed integer between

-263 and 263-1

7.72E+14

ipv4 string RFC2673 "104.75.173.179"

ipv6 string RFC4291 "2600:1401:2::8a"

iri string RFC3987 "https://bücher.example/"

iri-

reference

string RFC3987 "/damenbekleidung-jacken-

mäntel/"

json-

pointer

string RFC6901 "/items/0/id"

password string "secret"

period string RFC3339 - subset of ISO 8601. "2022-06-

30T14:52:44.276/PT48H"

"PT24H/2023-07-

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#ref-ISO8601
https://datatracker.ietf.org/doc/html/rfc5322
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc6531
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#ref-ISO8601

Page 93 of 152

OpenAPI

format

OpenAPI

type

Specification Example

30T18:22:16.315Z" "2024-05-

15T09:48:56.317Z/.."

regex string regular expressions as defined

in ECMA 262

"^[a-z0-9]+$"

relative-

json-

pointer

string Relative JSON pointers "1/id"

time string RFC3339 internet profile - subset

of ISO 8601.

"06:43:40.252Z"

uri string RFC3986 "https://www.example.com/"

uri-

reference

string RFC3986 "/clothing/"

uri-

template

string RFC6570 "/users/{id}"

uuid string RFC4122 "e2ab873e-b295-11e9-9c02-…​"

1.14.2 Additional Formats

APIs SHOULD also consider using the following formats.

format OpenAPI

type

Specification Example

bcp47 string multi letter language tag - see BCP 47.

It is a compatible extension of ISO 639-1 optionally

with additional information for language usage, like

region, variant, script.

"en-DE"

gtin-13 string Global Trade Item Number - see GTIN "5710798389878

"

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#ref-ISO8601
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/bcp47
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/Global_Trade_Item_Number

Page 94 of 152

format OpenAPI

type

Specification Example

iso-3166-

alpha-2

string two letter country code - see ISO 3166-1 alpha-2. "GB" Hint: It is

"GB" not "UK" .

iso-4217 string three letter currency code - see ISO 4217 "EUR"

iso-639-1 string two letter language code - see ISO 639-1. "en"

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Page 95 of 152

1.15 Integration Patterns

SHOULD use standard API integration patterns.

1.15.1 Anti-corruption layer

SHOULD wrap legacy APIs in an anti-corruption layer (ACL) so that consumers are able to

use modern REST-based API semantics.

Examples

Translate SOAP calls to REST calls.

The ACL makes SOAP requests to the legacy API and exposes a RESTful endpoint for the

new system.

The ACL takes the XML data from the SOAP response and transforms it into a JSON

format that the modern system expects.

The ACL can map legacy API operations to RESTful principles (resources and HTTP

methods).

1.15.2 Asynchronous Request-Reply

SHOULD use the asynchronous request-reply API pattern for long running tasks, such as

processing large datasets, image or video processing, or complex calculations.

Callback Pattern: Use when the client provides an API to receive notifications.

Polling Pattern: Use when the client does not provide an API to receive notifications.

Examples

Page 96 of 152

Poll for status:

Typical polling flow

Resource URIStatus EndpointAPI EndpointClient

Resource URIStatus EndpointAPI EndpointClient

POST

HTTP 202

GET

HTTP 302

GET

HTTP 200

1.15.3 Bulk

POST /namespace/product/v1/tasks/123/start

Response: 202 Accepted

{

"task_id": "123",

"status": "in_progress"

}

GET /namespace/product/v1/tasks/123/status

Response: 200 OK

{

"status": "completed",

"result": "success"

}

Page 97 of 152

SHOULD use bulk integration patterns to manage the processing of large volumes of data or

multiple transactions in a single operation. This approach enhances efficiency and reduces

the overhead associated with processing individual requests.

Examples

Batch Processing APIs: Endpoints that accept multiple records in a single request for

insertion, update, or deletion.

Bulk Data Import/Export: Tools and APIs that allow the import or export of datasets in

formats like CSV, JSON, or XML.

Parallel Processing: Distributing tasks across multiple processors or machines to handle

large-scale data operations concurrently.

Best Practices

Validate Data Thoroughly: Ensure all records meet validation rules before processing to

avoid partial failures.

Provide Detailed Feedback: After processing, return information about successes and

failures for individual records.

Optimize Performance: Utilize efficient data structures and algorithms to handle large

datasets without significant delays.

Manage Resource Utilization: Monitor and limit resource usage to prevent system

overloads during bulk operations.

Page 98 of 152

2 API Guidance Summary

Page 99 of 152

2.1 API Guidance Summary

This is summary high-level guidance for API producers (application teams) on adopting the

API principles, patterns and practices developed as part of the Big Rocks API strategy. Refer

to the full API Strategy and other references linked at the end of this document for more

information.

2.1.1 Definitions

APIM Platform: API Management Platform, a UKHSA-wide platform for managing and

accessing APIs.

Developer Portal: Component of the APIM Platform used by developers to access APIs,

onboard new APIs, and view API documentation.

API Catalogue: Feature of the Developer Portal that will contain all information related to

APIs onboarded and available on the APIM Platform.

2.1.2 Principles

These are the core high level principles to follow when designing, building, testing and

deploying your APIs.

Prioritise Reusability

Apply the API Design Guidelines and use the features of Developer Portal.

Check the API does not already exist by reviewing the UKHSA API Catalogue as well as

the cross-government UK API Catalogue. Evaluate if an existing API could potentially be

enhanced to also support the new use case.

Tip

https://confluence.collab.test-and-trace.nhs.uk/display/BRP/API+Management+Solution+Design#APIManagementSolutionDesign-AzureAPI-M
https://www.api.gov.uk/#uk-public-sector-apis

Page 100 of 152

Design your API to be reused. APIs should be broken down into reusable composable

interactions and data groupings. APIs should aim to be use case agnostic if possible and

the design and naming must be consistent with the established API Design Guidelines.

Adopt API-first Practices

Apply the API Design Guidelines and use the features of Developer Portal.

Design the API first. Follow GDS guidance and UKHSA API Design Guidelines.

Produce an OpenAPI definition utilising the OpenAPI specification as the first output of

your design process, and then develop it iteratively along with the service.

Share this specification early in development using the Developer Portal to get early

feedback on your design.

API first is the practice of designing software starting with an API, before designing your

web or mobile user interface. Developing the API before the rest of the service means a

platform or service can be built around the API.

Use Established API Patterns & Standards

Adopt the recommended API patterns and data standards.

Adopt the recommended patterns & standards, including industry and open standards

where appropriate. Follow the Technology Code of Practice and other standards

Tip

Note

Tip

https://www.gov.uk/guidance/gds-api-technical-and-data-standards#design-your-api-first
https://swagger.io/specification/
https://www.gov.uk/guidance/the-technology-code-of-practice
https://www.gov.uk/guidance/the-technology-code-of-practice

Page 101 of 152

recommended in UKHSA API guidelines, such as HTTP REST , JSON and related industry

standards used by NHS such as FHIR and OMOP .

Prioritise API Security

Adopt the API security patterns.

Follow secure by design process in the Secure by Design Guidelines and industry best

practices, including the OWASP API Security Project. Ensure your API has extensive tests

that validate inputs.

Ensure APIs have robust authorisation and authentication based on industry standards,

such as OAuth 2.0 and OpenID Connect. The APIM Platform will act as a “transparent

proxy” in authorisation scenarios, which includes passing through of auth tokens to

backend APIs.

Ensure that APIs are protected against overuse using rate limits by leveraging the

features of the APIM Platform.

Manage API Lifecycles

Adopt the API versioning & deprecation patterns.

Use the recommended versioning scheme to set clear expectations for clients on how

change will be managed. Keep the number of active versions of an API to a minimum and

have a process to retire old API versions. Refer to the Big Rocks guidance on API patterns

for more information.

Generate API Documentation

Tip

Tip

https://www.security.gov.uk/policy-and-guidance/secure-by-design/
https://owasp.org/www-project-api-security/

Page 102 of 152

Create an OpenAPI definition and use the features of Developer Portal to publish it.

Ensure the API is well documented using an OpenAPI definition. Documentation should

be concise and easy for developers use. The specification is machine-readable and will

support the generation of consistent accessible documentation. It can also be used to

accelerate development and testing through code generation.

Use the Developer Portal to make the API discoverable and ensure it is always accurate,

consistent, usable, and discoverable. This documentation supplements the solution

documentation on Confluence and LeanIX Basic Concepts and Modelling Guidance.

Support Testing with API Specifications

Adopt the recommended testing patterns and use the features of Developer Portal in the

SIT environment to support testing.

Use the OpenAPI definition to help define testing requirements early in development and

to prepare the test scripts and data that will be needed. Use tools that automatically

generate test stubs and client code from your OpenAPI definition to build functional tests.

Test API Performance

Adopt the recommended performance, reliability and monitoring guidelines and use the

features of Developer Portal in the NFT environment.

Tip

Tip

Tip

https://confluence.collab.test-and-trace.nhs.uk/display/AT/LeanIX+Basic+Concepts+and+Modelling+Guidance

Page 103 of 152

Test performance meets non-functional requirements. Response times and availability

must conform to UKHSA standards and provide a high quality of service to clients.

Follow Regulations & UKHSA Governance

Check the onboarding requirements if you are API product or consumer and want to

onboard your application or service.

Follow the Technology Code of Practice and other UK Government standards. Follow

relevant regulations, including the UK General Protection Regulation (GDPR). Ensure your

API has a business case and technical solution that complies with organisational

standards and is aligned with UKHSA technology strategy.

Follow the Technology Governance Schedule and Audit Trail process before onboarding a

new solution into the APIM Platform.

Ensure API Onboarding requirements are met.

Tip

https://www.gov.uk/guidance/the-technology-code-of-practice
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/
https://confluence.collab.test-and-trace.nhs.uk/display/AT/Technology+Governance+Schedule+and+Audit+Trail
https://confluence.collab.test-and-trace.nhs.uk/display/BRP/API+Onboarding

Page 104 of 152

3 Spectral Rules

Page 105 of 152

3.1 UKHSA Spectral Rules

3.1.1 Overview

A linting ruleset was created to support API Developers/Providers in achieving the standards

described in the UKHSA API Guidelines, ensuring consistency, reliability, and security across

all APIs developed within or on behalf of UKHSA.

As well as the rules described herein, the UKHSA ruleset includes the recommended built in

spectral OpenAPI Rules and the Spectral Documentation Ruleset; These are common sense

rules that ensure an OpenAPI definition adheres to the OpenAPI specification, as well as

encourage high quality, rich documentation which is especially important for providing the

best possible APIM Developer Portal experience.

Where rules been adopted from from existing open source API rulesets a link is supplied on

the relevant rule page.

3.1.2 How to use the rules

Install Spectral

Spectral is a flexible JSON/YAML linter for creating automated style guides, with baked in

support for OpenAPI (v3.1, v3.0, and v2.0), Arazzo v1.0, as well as AsyncAPI v2.x.

Install Spectral globally or as a dev dependency.

Read the official spectral documentation for more installation options.

Run Spectral against your OpenAPI definition

Run Spectral against your OpenAPI definition, referencing the spectral ruleset.

npm install -g @stoplight/spectral-cli

https://docs.stoplight.io/docs/spectral/0a73453054745-recommended-or-all
https://docs.stoplight.io/docs/spectral/4dec24461f3af-open-api-rules
https://github.com/stoplightio/spectral-documentation
https://swagger.io/specification/
https://docs.stoplight.io/docs/spectral
https://docs.stoplight.io/docs/spectral/b8391e051b7d8-installation

Page 106 of 152

You can reference a ruleset hosted via HTTP server.

You can only reference the raw Github URL if the github repository is public.

You can install the ruleset as via npm package and then reference that, bear in mind the

UKHSA ruleset npm package is hosted in github so please read Github's documentation

Working with the npm registry.

or create a local .spectral.yml ruleset which extends the one in this repository.

then you can just run the following.

Review and fix any reported issues

Once the linter has highlighted any issues or errors, review and fix to ensure your OpenAPI

definition remains compliant with the UKHSA guidelines.

CI/CD Github Actions

The following is a sample Github actions job which can be used as an example of setting up

linting as part of you CI/CD pipeline.

spectral lint openapi-definition.yml --ruleset

https://raw.githubusercontent.com/ukhsa-collaboration/api-

guidelines/refs/heads/main/.spectral.yaml

npm install @ukhsa-collaboration/spectral-rules

spectral lint openapi-definition.yml --ruleset ./node_modules/@ukhsa-

collaboration/spectral-rules/.spectral.yaml

echo "extends: ['@ukhsa-collaboration/spectral-rules']" > .spectral.yml

spectral lint openapi-definition.yml

https://meta.stoplight.io/docs/spectral/7895ff1196448-sharing-and-distributing-rulesets#http-server
https://meta.stoplight.io/docs/spectral/7895ff1196448-sharing-and-distributing-rulesets#npm
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-npm-registry

Page 107 of 152

Additional Recommended Tooling

...

jobs:

lint-openapi:

name: Lint OpenAPI

runs-on: ubuntu-latest

permissions:

contents: read

issues: read

checks: write

pull-requests: write

steps:

- name: Checkout code

uses: actions/checkout@v4

- uses: actions/setup-node@v4

with:

node-version: '22.x'

registry-url: 'https://npm.pkg.github.com'

Defaults to the user or organization that owns the workflow

file

scope: '@ukhsa-collaboration'

- run: npm install @ukhsa-collaboration/spectral-rules

env:

NODE_AUTH_TOKEN: ${{ secrets.GITHUB_TOKEN }}

- name: Install spectral

run: curl -L

https://raw.github.com/stoplightio/spectral/master/scripts/install.sh | sh

- name: Lint example OpenAPI

run: |

spectral --version

spectral lint "*.{json,yml,yaml}" -r ${{ GITHUB.WORKSPACE

}}/node_modules/@ukhsa-collaboration/spectral-rules/.spectral.yaml -f

github-actions

Page 108 of 152

Tool Description

VS Code

Extension

Official spectral VS Code extension provides real time linting / intellisense on your OpenAPI

definition.

Github Action Official spectral Github action provides ability to lint your OpenAPI definition in CI/CD

workflows.

To run the spectral linter in your git hub CI/CD workflow you will need to ensure your

repository is added to the list of repositories allowed to download the npm package.

Read the official spectral documentation for more development workflows.

Important

https://marketplace.visualstudio.com/items?itemName=stoplight.spectral
https://marketplace.visualstudio.com/items?itemName=stoplight.spectral
https://github.com/marketplace/actions/spectral-linting
https://docs.github.com/en/packages/learn-github-packages/configuring-a-packages-access-control-and-visibility#github-actions-access-for-packages-scoped-to-personal-accounts
https://docs.stoplight.io/docs/spectral/ecaa0fd8a950d-workflows

Page 109 of 152

3.2 MUST

Page 110 of 152

3.2.1 MUST define a format for

integer types

integer properties MUST have a format defined (int32 , int64 , or bigint).

Invalid Example

Valid Example

Zalando Guideline 171

requestBody:

content:

application/json:

schema:

type: object

properties:

range:

type: integer

requestBody:

content:

application/json:

schema:

type: object

properties:

range:

type: integer

format: int32

https://opensource.zalando.com/restful-api-guidelines/#171

Page 111 of 152

3.2.2 MUST define a format for

number types

number properties MUST have a format defined (float , double , or decimal).

Invalid Example

Valid Example

Zalando Guideline 171

requestBody:

content:

application/json:

schema:

type: object

properties:

range:

type: number

requestBody:

content:

application/json:

schema:

type: object

properties:

range:

type: number

format: float

https://opensource.zalando.com/restful-api-guidelines/#171

Page 112 of 152

3.2.3 MUST define security

schemes

All APIs MUST have a security scheme defined.

If an API doesn't have a security scheme defined, it means the entire API is open to the public.

That's probably not what you want, even if all the data is read-only. Setting lower rate limits

for the public and letting known consumers use more resources is a handy path to

monetization, and helps know who your power users are when changes need feedback or

migration, even if not just good practice.

Valid Example

UKHSA Guidelines Security

components:

securitySchemes:

oAuth:

type: oauth2

description: This API uses OAuth 2 with the authorization code flow.

[More info](https://oauth.net/2/grant-types/authorization-code/)

flows:

authorizationCode:

authorizationUrl: https://domain.test/api/oauth/dialog

tokenUrl: https://domain.test/api/oauth/token

refreshUrl: https://domain.test/api/oauth/token

scopes:

tests:read: read test results

tests:write: submit test results

Page 113 of 152

3.2.4 MUST have info api audience

The info object MUST have an x-audience that matches at least one of these values:

audience Use case

company-internal for internal use only with UKHSA

partner-external for UKHSA partners under a service agreement

premium-external for publicly available but commercial/monetised APIs behind a paywall

public-external for public and freely accessible APIs (e.g. Data Dashboard)

Valid Example

info:

title: Test Results Api

x-audience: public-external

Page 114 of 152

3.2.5 MUST have info contact

email

The info object MUST have a contact email property that contains a valid email address

for the responsible team.

Valid Example

Zalando Guideline 218

info:

...

...

contact:

email: 'support.contact@acme.com'

https://opensource.zalando.com/restful-api-guidelines/#218

Page 115 of 152

3.2.6 MUST have info contact

name

The info object MUST have a contact:name property that contains a valid name for the

team or person responsible for the API.

Valid Example

Zalando Guideline 218

info:

...

...

contact:

name: 'Tequila Mockingbirds'

https://opensource.zalando.com/restful-api-guidelines/#218

Page 116 of 152

3.2.7 MUST have info contact url

The info object MUST have a contact:url property that contains a valid URL to contact

the team or person responsible for the API.

Valid Example

Zalando Guideline 218

info:

...

...

contact:

...

url: https://acme.com

...

https://opensource.zalando.com/restful-api-guidelines/#218

Page 117 of 152

3.2.8 MUST have info description

The info object MUST have a description property defined.

Valid Example

Zalando Guideline 218

info:

description: This describes my API.

...

https://opensource.zalando.com/restful-api-guidelines/#218

Page 118 of 152

3.2.9 MUST have info title

The info object must have a title property defined.

Valid Example

Zalando Guideline 218

info:

title: Payments API

...

https://opensource.zalando.com/restful-api-guidelines/#218

Page 119 of 152

3.2.10 MUST have info value chain

The info object MUST have an x-value-chain that matches at least one of these values.

prevent

detect

analyse

respond

cross-cutting

enabling

Valid Example

info:

title: Test Results Api

x-value-chain: detect

Page 120 of 152

3.2.11 MUST have info version

The info object MUST have a version property that follows semantic rules to distinguish

API versions.

Invalid Example

Valid Example

Zalando Guideline 218 and Zalando Guideline 116

info:

title: ...

description: ...

version: 1

<...>

info:

title: ...

description: ...

version: 1.1.0

...

http://semver.org/spec/v2.0.0.html
https://opensource.zalando.com/restful-api-guidelines/#218
https://opensource.zalando.com/restful-api-guidelines/#116

Page 121 of 152

3.2.12 MUST NOT define request

body for GET requests

A GET request MUST NOT accept a request body.

Defining a request body on a HTTP GET is frowned upon due to the confusion that comes

from unspecified behaviour in the HTTP specification.

Invalid Example

paths:

/results/{resultId}:

get:

summary: Get a specific test result

description: Get a specific test result.

operationId: getResult

tags:

- results

requestBody:

content:

application/json:

...

Page 122 of 152

3.2.13 MUST NOT use http basic

authentication

APIs MUST NOT use HTTP Basic Authentication.

HTTP Basic is an inherently insecure way to pass credentials to the API. They're placed in the

URL in base64 which can be decrypted easily. Even if you're using a token, there are far better

ways to handle passing tokens to an API which are less likely to leak.

See OWASP advice.

Invalid Example

UKHSA Guidelines Security

...

components:

securitySchemes:

basicAuth:

type: http

scheme: basic

...

security:

- basicAuth: []

https://owasp.org/API-Security/editions/2019/en/0xa2-broken-user-authentication/

Page 123 of 152

3.2.14 MUST NOT use uri

versioning

Path MUST not contain versions.

Invalid Example

Valid Example

Zalando Guideline 115

/user/v2:

/user:

https://opensource.zalando.com/restful-api-guidelines/#115

Page 124 of 152

3.2.15 MUST return 200 for api

root

Root path MUST define a 200 response.

Valid Example

UKHSA Guidelines Versioning

paths:

/:

get:

summary: Get API information.

description: Get API information.

operationId: getApiInfo

tags:

- API Meta Information

responses:

'200':

description: This response returns a information about the API.

content:

application/json:

schema:

$ref: '#/components/schemas/ApiInfo'

default:

$ref: '#/components/responses/UnexpectedError'

Page 125 of 152

3.2.16 MUST specify default

response

Each operation MUST include a default error response that combines multiple errors.

Invalid Example

The example below contains only a 200 response.

Valid Example

The example below contains a 200 response and a default response that references the

Problem errors file.

responses:

...

get:

summary: Get User Info by User ID

tags: []

responses:

'200':

description: OK

Page 126 of 152

Zalando Guideline 151

responses:

...

get:

summary: Get User Info by User ID

tags: []

responses:

'200':

description: OK

default:

description: User Not Found

content:

application/problem+json:

schema:

$ref: ../models/Problem.yaml

https://opensource.zalando.com/restful-api-guidelines/#151

Page 127 of 152

3.2.17 MUST use camel case for

property names

Property names MUST use camel-case strings that match this pattern: ^[a-z][a-z0-9]+

(?:[A-Z][a-z0-9]+)*$.

Name Description

camel case The first letter of the first word MUST begin with a lowercase letter, the first letter of each subsequent

word MUST begin with a capital letter and MUST NOT contain any separators between words such

as spaces or special characters such as hyphens or underscores.

Invalid Examples

Valid Examples

UKHSA Guidelines Property Names

CustomerNumber

Customer_Number

customer-number

customerNumber

salesOrderNumber

billingAddress

https://en.wikipedia.org/wiki/Camel_case

Page 128 of 152

3.2.18 MUST use camel case for

query parameters

Query parameters MUST use camel-case strings that match this pattern: ^[a-z][a-z0-9]+

(?:[A-Z][a-z0-9]+)*$.

Name Description

camel case The first letter of the first word MUST begin with a lowercase letter, the first letter of each subsequent

word MUST begin with a capital letter and MUST NOT contain any separators between words such

as spaces or special characters such as hyphens or underscores.

Invalid Examples

Valid Examples

UKHSA Guidelines Parameter Names

/product/v1/users?

max_results=10&StartIndex=20&OTHER_PARAM=thing&other_other_param=that

/product/v1/users?maxResults=10&startIndex=20

https://en.wikipedia.org/wiki/Camel_case

Page 129 of 152

3.2.19 MUST use https protocol

only

Servers MUST be https and no other protocol is allowed.

Invalid Example

Valid Example

UKHSA Guidelines Security

servers:

- url: http://azgw.api.ukhsa.gov.uk/detect/testing/v1

...

servers:

- url: https://azgw.api.ukhsa.gov.uk/detect/testing/v1

...

Page 130 of 152

3.2.20 MUST use lowercase with

hyphens for path segments

Path segments MUST use lowercase letters and hyphens to separate words.

Invalid Example

Valid Example

UKHSA Guidelines Path Segments

Zalando Guideline 129

/BeachReport:

/beach-report:

https://opensource.zalando.com/restful-api-guidelines/#129

Page 131 of 152

3.2.21 MUST use normalised paths

Path MUST start with a slash and MUST NOT end with a slash (except root path /).

Invalid Example

Valid Example

Zalando Guideline 136

paths:

/patient/:

...

/patient/{patientId}/results/:

paths:

/:

...

/patient:

...

/patient/{patientId}/results:

https://opensource.zalando.com/restful-api-guidelines/#136

Page 132 of 152

3.2.22 MUST use normalized paths

without empty path segments

Path segments MUST not contain duplicate slashes.

Invalid Example

Valid Example

Zalando Guideline 136

paths:

/user//report:

paths:

/user-report:

https://opensource.zalando.com/restful-api-guidelines/#136

Page 133 of 152

3.2.23 MUST use problem json as

default response

The content type for the default response MUST be application/problem+json .

Invalid Example

The default response in this example incorrectly uses application/json as the content

type.

Valid Example

The default response in this example correctly uses application/problem+json as the

content type.

responses:

...

get:

summary: Get User Info by User ID

tags: []

responses:

...

default:

description: ...

content:

application/json:

schema:

$ref: ../models/Problem.yaml

Page 134 of 152

Zalando Guideline 151

responses:

...

get:

summary: Get User Info by User ID

tags: []

responses:

...

default:

description: ...

content:

application/problem+json:

schema:

$ref: ../models/Problem.yaml

https://opensource.zalando.com/restful-api-guidelines/#151

Page 135 of 152

3.2.24 MUST use problem json for

errors

The content type for 4xx and 5xx status codes MUST be application/problem+json .

Invalid Example

The content type for the 503 response in this example incorrectly uses the

application/json content type.

Valid Example

The content type for the 503 response in this example correctly uses the

application/problem+json content type.

Zalando Guideline 176

responses:

'503':

description: ...

content:

application/json:

schema:

$ref: ../models/Problem.yaml

responses:

'503':

description: ...

content:

application/problem+json:

schema:

$ref: ../models/Problem.yaml

https://opensource.zalando.com/restful-api-guidelines/#176

Page 136 of 152

3.2.25 MUST use valid problem

json schema

Problem schema MUST include this set of minimal required properties and validations:

Valid Example

Page 137 of 152

Zalando Guideline 176

ProblemDetails:

type: object

description: Schema for detailed problem information.

properties:

type:

type: string

description: A URI reference that identifies the problem type.

format: uri-reference

maxLength: 1024

status:

type: integer

description: The HTTP status code generated by the origin server for

this occurrence of the problem.

format: int32

minimum: 100

maximum: 599

title:

type: string

description: A short, human-readable summary of the problem type. It

should not change from occurrence to occurrence of the problem, except for

purposes of localization.

maxLength: 1024

detail:

type: string

description: A human-readable explanation specific to this

occurrence of the problem.

maxLength: 4096

instance:

type: string

description: A URI reference that identifies the specific occurrence

of the problem. It may or may not yield further information if

dereferenced.

maxLength: 1024

required:

- type

- status

- title

- detail

- instance

https://opensource.zalando.com/restful-api-guidelines/#176

Page 138 of 152

3.2.26 MUST use valid version info

schema

ApiInfo schema MUST include this set of minimal required properties and validations:

Valid Example

Page 139 of 152

components:

schema:

...

ApiInfo:

type: object

description: Schema for detailing API information.

properties:

name:

type: string

description: The name of the API.

example: Test Results API

version:

type: string

pattern: '^(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(?:-((?:0|[1-

9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\.(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-

Z-]*))*))?(?:\+([0-9a-zA-Z-]+(?:\.[0-9a-zA-Z-]+)*))?$'

description: The version of the API.

example: 1.0.0

releaseDate:

type: string

format: date

description: The release date of this API version.

example: 2025-02-26

documentation:

type: string

format: uri

description: A URL to the API documentation.

example:

https://developer.ukhsa.gov.uk/namespace/product/v1/docs

releaseNotes:

type: string

format: uri

description: A URL to the API release notes.

example:

https://developer.ukhsa.gov.uk/namespace/product/v1/releaseNotes

required:

- name

- version

- releaseDate

- documentation

- releaseNotes

Page 140 of 152

3.3 SHOULD

Page 141 of 152

3.3.1 SHOULD always return json

objects as top level data structures

The top-level data structure for a request body or response body SHOULD be an object.

Invalid Example

Valid Example

UKHSA Guidelines API Design

Zalando Guideline 210

requestBody:

content:

application/json:

schema:

type: array

items:

type: string

requestBody:

content:

application/json:

schema:

type: object

properties:

firstName:

type: string

lastName:

type: string

https://opensource.zalando.com/restful-api-guidelines/#210

Page 142 of 152

3.3.2 SHOULD declare enum values

using upper snake case format

enum and x-extensible-enum values SHOULD be in UPPER_SNAKE_CASE format.

Invalid Example

Valid Example

Zalando Guideline 240

schema:

measurement:

type: string

x-extensible-enum:

- Standard

- Metric

- Imperial

- Non-standard

schema:

measurement:

type: string

x-extensible-enum:

- STANDARD

- METRIC

- IMPERIAL

- NON_STANDARD

https://opensource.zalando.com/restful-api-guidelines/#240

Page 143 of 152

3.3.3 SHOULD define api root

APIs SHOULD have a root path (/) defined.

Good documentation is always welcome, but API consumers SHOULD be able to get a pretty

long way through interaction with the API alone. They SHOULD at least know they're looking

at the right place instead of getting a 404 or random 500 error as is common in some APIs.

Valid Example

UKHSA Guidelines Versioning

paths:

/:

get:

summary: Get API information.

description: Get API information.

operationId: getApiInfo

tags:

- API Meta Information

responses:

'200':

description: This response returns a information about the API.

content:

application/json:

schema:

$ref: '#/components/schemas/ApiInfo'

default:

$ref: '#/components/responses/UnexpectedError'

Page 144 of 152

3.3.4 should have location header

in 201 response

201 Created responses to POST methods SHOULD have a Location header identifying

the location of the newly created resource.

See RFC9110 Section 10.2.2 for more information on the Location header.

Valid Example

UKHSA Guidlelines API Design

paths:

/results:

get:

...

post:

summary: Submit a new test result

description: Submit a new test result.

operationId: submitResult

tags:

- Test Results

requestBody:

...

responses:

'201':

description: This response returns a JSON object containing the

test result data.

headers:

Location:

description: The URL of the created test result.

schema:

type: string

format: uri

example:

https://azgw.api.ukhsa.gov.uk/detect/testing/v1/results/de750613-ef3c-

4f5d-8148-10308b91896c

...

https://datatracker.ietf.org/doc/html/rfc9110#section-10.2.2

Page 145 of 152

3.3.5 SHOULD limit number of

resource types

Resource types (root URL paths) SHOULD be limited to no more than eight.

Zalando Guideline 146

https://opensource.zalando.com/restful-api-guidelines/#146

Page 146 of 152

3.3.6 SHOULD limit number of sub

resource levels

Path SHOULD contain no more than 3 sub-resources (nested resources with non-root URL

paths).

Invalid Example

Valid Example

Zalando Guideline 147

/users/location/name/address/email:

/users/{userId}/{name}:

https://opensource.zalando.com/restful-api-guidelines/#147

Page 147 of 152

3.3.7 SHOULD prefer standard

media type names

Response content SHOULD use a standard media type application/json or

application/problem+json (required for problem schemas).

Invalid Example

Valid Example

'204':

description: No Content

content:

application/xml:

schema:

type: object

properties:

name:

type: string

url:

type: string

format: uri-reference

'204':

description: No Conten

content:

application/json:

schema:

type: object

properties:

name:

type: string

url:

type: string

format: uri-reference

Page 148 of 152

Zalando Guideline 172

https://opensource.zalando.com/restful-api-guidelines/#172

Page 149 of 152

3.3.8 SHOULD support

application/json content

request body

Every request SHOULD support at least application/json media type.

Valid Example

paths:

/results:

...

post:

summary: Submit a new test result

description: Submit a new test result.

operationId: submitResult

tags:

- results

requestBody:

content:

application/json:

schema:

$ref: '#/components/schemas/ResultRequest'

Page 150 of 152

3.3.9 SHOULD use hyphenated

pascal case for header parameters

Header parameters SHOULD use hyphenated Pascal case.

Name Description

hyphenated pascal Each word MUST begin with a capital letter, and be separated by a hyphen.

Invalid Example

Valid Example

Zalando Guideline 132

parameters:

- schema:

type: string

in: header

name: PascalCaseHeader

parameters:

- schema:

type: string

in: header

name: Pascal-Case-Header

https://opensource.zalando.com/restful-api-guidelines/#132

Page 151 of 152

3.3.10 SHOULD use standard http

status codes

response SHOULD use standard HTTP status codes.

Invalid Example

Error-500 is not a valid HTTP status code.

Valid Example

500 is a valid HTTP status code.

Zalando Guideline 150

/weather:

get:

responses:

'Error-500':

description: Internal Server Error

/weather:

get:

responses:

'500':

description: Internal Server Error

https://opensource.zalando.com/restful-api-guidelines/#150

Page 152 of 152

3.3.11 SHOULD use x-

extensible-enum

enum values SHOULD use the marker x-extensible-enum rather than enum .

Invalid Example

Valid Example

Zalando Guideline 112

deliveryMethods:

type: string

enum:

- PARCEL

- LETTER

- EMAIL

deliveryMethods:

type: string

x-extensible-enum:

- PARCEL

- LETTER

- EMAIL

https://opensource.zalando.com/restful-api-guidelines/#112

